Suppr超能文献

鉴定一个与 MC1R 相互作用并修饰内罗尔-安格斯 F₂群体黑色被毛颜色的主基因座。

Identification of a major locus interacting with MC1R and modifying black coat color in an F₂ Nellore-Angus population.

机构信息

Department of Animal Science, Texas A& M University, College Station, TX 77843, USA.

出版信息

Genet Sel Evol. 2014 Jan 24;46(1):4. doi: 10.1186/1297-9686-46-4.

Abstract

BACKGROUND

In cattle, base color is assumed to depend on the enzymatic activity specified by the MC1R locus, i.e. the extension locus, with alleles coding for black (E(D)), red (e), and wild-type (E+). In most mammals, these alleles are presumed to follow the dominance model of E(D) > E+ > e, although exceptions are found. In Bos indicus x Bos taurus F2 cattle, some E(D)E+ heterozygotes are discordant with the dominance series for MC1R and display various degrees of red pigmentation on an otherwise predicted black background. The objective of this study was to identify loci that modify black coat color in these individuals.

RESULTS

Reddening was classified with a subjective scoring system. Interval analyses identified chromosome-wide suggestive (P < 0.05) and significant (P < 0.01) QTL on bovine chromosomes (BTA) 4 and 5, although these were not confirmed using single-marker association or Bayesian methods. Evidence of a major locus (F = 114.61) that affects reddening was detected between 60 and 73 Mb on BTA 6 (Btau4.0 build), and at 72 Mb by single-marker association and Bayesian methods. The posterior mean of the genetic variance for this region accounted for 43.75% of the genetic variation in reddening. This region coincided with a cluster of tyrosine kinase receptor genes (PDGFRA, KIT and KDR). Fitting SNP haplotypes for a 1 Mb interval that contained all three genes and centered on KIT accounted for the majority of the variation attributed to this major locus, which suggests that one of these genes or associated regulatory elements, is responsible for the majority of variation in degree of reddening.

CONCLUSIONS

Recombinants in a 5 Mb region surrounding the cluster of tyrosine kinase receptor genes implicated PDGFRA as the strongest positional candidate gene. A higher density marker panel and functional analyses will be required to validate the role of PDGFRA or other regulatory variants and their interaction with MC1R for the modification of black coat color in Bos indicus influenced cattle.

摘要

背景

在牛中,基础色被认为取决于 MC1R 基因座(即扩展基因座)所指定的酶活性,即等位基因编码黑色(E(D))、红色(e)和野生型(E+)。在大多数哺乳动物中,这些等位基因被认为遵循 E(D) > E+ > e 的显性模型,尽管也有例外。在印度野牛 x 瘤牛 F2 牛中,一些 E(D)E+杂合子与 MC1R 的显性系列不一致,并在预测的黑色背景上显示出不同程度的红色色素沉着。本研究的目的是鉴定在这些个体中修饰黑色被毛颜色的基因座。

结果

使用主观评分系统对变红进行分类。区间分析确定了牛染色体 4 和 5 上与黑色被毛颜色有关的全染色体提示性(P < 0.05)和显著(P < 0.01)的 QTL,尽管这些 QTL 没有通过单一标记关联或贝叶斯方法得到确认。在牛染色体 6(Btau4.0 构建体)60-73 Mb 之间和 72 Mb 处通过单标记关联和贝叶斯方法检测到影响变红的主要基因座(F = 114.61)的证据。该区域的遗传方差后均值占变红遗传变异的 43.75%。该区域与一组酪氨酸激酶受体基因(PDGFRA、KIT 和 KDR)重叠。拟合包含这三个基因并以 KIT 为中心的 1 Mb 间隔 SNP 单倍型,解释了归因于该主基因座的大部分变异,这表明这些基因或相关调节元件之一负责红色程度的大部分变异。

结论

酪氨酸激酶受体基因簇周围 5 Mb 区域的重组体暗示 PDGFRA 是最强的位置候选基因。需要更高密度的标记面板和功能分析来验证 PDGFRA 或其他调节变体及其与 MC1R 对印度野牛影响的牛的黑色被毛颜色修饰的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea0a/3924621/5dc789a61578/1297-9686-46-4-1.jpg

相似文献

2
Identification and sequence characterization of melanocortin 1 receptor gene () in versus ().
Anim Biotechnol. 2020 Aug;31(4):283-294. doi: 10.1080/10495398.2019.1585866. Epub 2019 Mar 19.
5
Epistatic interactions between at least three loci determine the "rat-tail" phenotype in cattle.
Genet Sel Evol. 2016 Mar 31;48:26. doi: 10.1186/s12711-016-0199-8.
8
The genetics of brown coat color and white spotting in domestic yaks (Bos grunniens).
Anim Genet. 2014 Oct;45(5):652-9. doi: 10.1111/age.12191. Epub 2014 Jul 3.
9
Identification of two new recessive MC1R alleles in red-coloured Evolèner cattle and other breeds.
Anim Genet. 2022 Jun;53(3):427-435. doi: 10.1111/age.13206. Epub 2022 Apr 22.

引用本文的文献

6
Molecular characterization of coat color gene in Sahiwal versus Karan Fries bovine.
J Genet Eng Biotechnol. 2021 Jan 29;19(1):22. doi: 10.1186/s43141-021-00117-2.
9
A low-density SNP genotyping panel for the accurate prediction of cattle breeds.
J Anim Sci. 2020 Nov 1;98(11). doi: 10.1093/jas/skaa337.

本文引用的文献

2
Extension of the bayesian alphabet for genomic selection.
BMC Bioinformatics. 2011 May 23;12:186. doi: 10.1186/1471-2105-12-186.
3
Bayesian quantitative trait locus mapping using inferred haplotypes.
Genetics. 2010 Mar;184(3):839-52. doi: 10.1534/genetics.109.113183. Epub 2010 Jan 4.
4
Genetic heterogeneity at the bovine KIT gene in cattle breeds carrying different putative alleles at the spotting locus.
Anim Genet. 2010 Jun;41(3):295-303. doi: 10.1111/j.1365-2052.2009.02007.x. Epub 2009 Nov 26.
6
Genetic inversion in mast cell-deficient (Wsh) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy.
Am J Pathol. 2008 Dec;173(6):1693-701. doi: 10.2353/ajpath.2008.080407. Epub 2008 Nov 6.
7
The serine protease Corin is a novel modifier of the Agouti pathway.
Development. 2008 Jan;135(2):217-25. doi: 10.1242/dev.011031. Epub 2007 Dec 5.
8
PLINK: a tool set for whole-genome association and population-based linkage analyses.
Am J Hum Genet. 2007 Sep;81(3):559-75. doi: 10.1086/519795. Epub 2007 Jul 25.
10
Controlling the proportion of false positives in multiple dependent tests.
Genetics. 2004 Jan;166(1):611-9. doi: 10.1534/genetics.166.1.611.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验