Suppr超能文献

生存结局的最优完全匹配:一种值得更广泛应用的方法。

Optimal full matching for survival outcomes: a method that merits more widespread use.

作者信息

Austin Peter C, Stuart Elizabeth A

机构信息

Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.

Institute of Health Management, Policy and Evaluation, University of Toronto, Toronto, Ontario, Canada.

出版信息

Stat Med. 2015 Dec 30;34(30):3949-67. doi: 10.1002/sim.6602. Epub 2015 Aug 6.

Abstract

Matching on the propensity score is a commonly used analytic method for estimating the effects of treatments on outcomes. Commonly used propensity score matching methods include nearest neighbor matching and nearest neighbor caliper matching. Rosenbaum (1991) proposed an optimal full matching approach, in which matched strata are formed consisting of either one treated subject and at least one control subject or one control subject and at least one treated subject. Full matching has been used rarely in the applied literature. Furthermore, its performance for use with survival outcomes has not been rigorously evaluated. We propose a method to use full matching to estimate the effect of treatment on the hazard of the occurrence of the outcome. An extensive set of Monte Carlo simulations were conducted to examine the performance of optimal full matching with survival analysis. Its performance was compared with that of nearest neighbor matching, nearest neighbor caliper matching, and inverse probability of treatment weighting using the propensity score. Full matching has superior performance compared with that of the two other matching algorithms and had comparable performance with that of inverse probability of treatment weighting using the propensity score. We illustrate the application of full matching with survival outcomes to estimate the effect of statin prescribing at hospital discharge on the hazard of post-discharge mortality in a large cohort of patients who were discharged from hospital with a diagnosis of acute myocardial infarction. Optimal full matching merits more widespread adoption in medical and epidemiological research. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

摘要

基于倾向得分进行匹配是一种常用的分析方法,用于估计治疗对结局的影响。常用的倾向得分匹配方法包括最近邻匹配和最近邻卡尺匹配。罗森鲍姆(1991年)提出了一种最优完全匹配方法,其中形成的匹配层由一个治疗组受试者和至少一个对照组受试者或一个对照组受试者和至少一个治疗组受试者组成。完全匹配在应用文献中很少被使用。此外,其在生存结局方面的表现尚未得到严格评估。我们提出一种使用完全匹配来估计治疗对结局发生风险的影响的方法。进行了一系列广泛的蒙特卡罗模拟,以检验最优完全匹配在生存分析中的表现。将其表现与最近邻匹配、最近邻卡尺匹配以及使用倾向得分的治疗逆概率加权法的表现进行了比较。与其他两种匹配算法相比,完全匹配具有更优的表现,并且与使用倾向得分的治疗逆概率加权法的表现相当。我们举例说明了完全匹配在生存结局中的应用,以估计在一大群因急性心肌梗死出院的患者中,出院时开具他汀类药物对出院后死亡风险的影响。最优完全匹配值得在医学和流行病学研究中更广泛地采用。© 2015作者。《医学统计学》由约翰·威利父子有限公司出版

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df6/5014206/16eb3d4b3c19/SIM-34-3949-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验