Suppr超能文献

模拟序贯多重分配随机试验以生成最佳个性化华法林给药策略。

Simulating sequential multiple assignment randomized trials to generate optimal personalized warfarin dosing strategies.

作者信息

Rich Benjamin, Moodie Erica Em, Stephens David A

机构信息

Division of Clinical Epidemiology, McGill University Health Centre, Montreal, QC, Canada.

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada

出版信息

Clin Trials. 2014 Aug;11(4):435-444. doi: 10.1177/1740774513517063. Epub 2014 Jan 24.

Abstract

BACKGROUND

Due to the cost and complexity of conducting a sequential multiple assignment randomized trial (SMART), it is desirable to pre-define a small number of personalized regimes to study.

PURPOSE

We proposed a simulation-based approach to studying personalized dosing strategies in contexts for which a therapeutic agent's pharmacokinetic and pharmacodynamics properties are well understood. We take dosing of warfarin as a case study, as its properties are well understood. We consider a SMART in which there are five intervention points in which dosing may be modified, following a loading phase of treatment.

METHODS

Realistic SMARTs are simulated, and two methods of analysis, G-estimation and Q-learning, are used to assess potential personalized dosing strategies.

RESULTS

In settings where outcome modelling may be complex due to the highly non-linear nature of the pharmacokinetic and pharmacodynamics mechanisms of the therapeutic agent, G-estimation provides for which the more promising method of estimating an optimal dosing strategy. Used in combination with the simulated SMARTs, we were able to improve simulated patient outcomes and suggest which patient characteristics were needed to best individually tailor dosing. In particular, our simulations suggest that current dosing should be determined by an individual's current coagulation time as measured by the international normalized ratio (INR), their last measured INR, and their last dose. Tailoring treatment only based on current INR and last warfarin dose provided inferior control of INR over the course of the trial.

LIMITATIONS

The ability of the simulated SMARTs to suggest optimal personalized dosing strategies relies on the pharmacokinetic and pharmacodynamic models used to generate the hypothetical patient profiles. This approach is best suited to therapeutic agents whose effects are well studied.

CONCLUSION

Prior to investing in a complex randomized trial that involves sequential treatment allocations, simulations should be used where possible in order to guide which dosing strategies to evaluate.

摘要

背景

由于进行序贯多重分配随机试验(SMART)的成本和复杂性,预先定义少量个性化治疗方案进行研究是很有必要的。

目的

我们提出了一种基于模拟的方法,用于在治疗药物的药代动力学和药效学特性已被充分了解的情况下研究个性化给药策略。我们以华法林的给药为例进行研究,因为其特性已被充分了解。我们考虑一种SMART,在治疗的负荷期之后有五个干预点,在这些点可以调整给药剂量。

方法

模拟现实中的SMART,并使用两种分析方法,即G估计和Q学习,来评估潜在的个性化给药策略。

结果

在由于治疗药物的药代动力学和药效学机制具有高度非线性性质而导致结果建模可能复杂的情况下,G估计提供了一种更有前景的估计最佳给药策略的方法。结合模拟的SMART使用,我们能够改善模拟患者的治疗结果,并指出为实现最佳个体化给药需要哪些患者特征。特别是,我们的模拟表明,当前的给药剂量应由个体通过国际标准化比值(INR)测量的当前凝血时间、其上次测量的INR以及其上次剂量来确定。仅基于当前INR和上次华法林剂量进行治疗调整,在试验过程中对INR的控制效果较差。

局限性

模拟的SMART提出最佳个性化给药策略的能力依赖于用于生成假设患者概况的药代动力学和药效学模型。这种方法最适合其效果已得到充分研究的治疗药物。

结论

在投入开展涉及序贯治疗分配的复杂随机试验之前,应尽可能使用模拟来指导评估哪些给药策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验