Suppr超能文献

计算神经科学软件开发的当前实践以及如何改进它。

Current practice in software development for computational neuroscience and how to improve it.

作者信息

Gewaltig Marc-Oliver, Cannon Robert

机构信息

Blue Brain Project, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Textensor Ltd., Edinburgh, United Kingdom.

出版信息

PLoS Comput Biol. 2014 Jan;10(1):e1003376. doi: 10.1371/journal.pcbi.1003376. Epub 2014 Jan 23.

Abstract

Almost all research work in computational neuroscience involves software. As researchers try to understand ever more complex systems, there is a continual need for software with new capabilities. Because of the wide range of questions being investigated, new software is often developed rapidly by individuals or small groups. In these cases, it can be hard to demonstrate that the software gives the right results. Software developers are often open about the code they produce and willing to share it, but there is little appreciation among potential users of the great diversity of software development practices and end results, and how this affects the suitability of software tools for use in research projects. To help clarify these issues, we have reviewed a range of software tools and asked how the culture and practice of software development affects their validity and trustworthiness. We identified four key questions that can be used to categorize software projects and correlate them with the type of product that results. The first question addresses what is being produced. The other three concern why, how, and by whom the work is done. The answers to these questions show strong correlations with the nature of the software being produced, and its suitability for particular purposes. Based on our findings, we suggest ways in which current software development practice in computational neuroscience can be improved and propose checklists to help developers, reviewers, and scientists to assess the quality of software and whether particular pieces of software are ready for use in research.

摘要

计算神经科学领域几乎所有的研究工作都涉及软件。随着研究人员试图理解日益复杂的系统,对具备新功能的软件的需求也在不断增加。由于所研究的问题范围广泛,新软件往往由个人或小团队迅速开发出来。在这些情况下,很难证明软件能给出正确的结果。软件开发人员通常对他们编写的代码持开放态度,并愿意分享,但潜在用户对软件开发实践和最终成果的巨大多样性,以及这如何影响软件工具在研究项目中的适用性,却知之甚少。为了帮助厘清这些问题,我们审查了一系列软件工具,并询问软件开发的文化和实践是如何影响其有效性和可信度的。我们确定了四个关键问题,可用于对软件项目进行分类,并将它们与所产生的产品类型相关联。第一个问题涉及正在生产的是什么。其他三个问题涉及工作为何进行、如何进行以及由谁来进行。这些问题的答案与所开发软件的性质及其对特定目的的适用性密切相关。基于我们的研究结果,我们提出了一些方法来改进计算神经科学当前的软件开发实践,并提出了清单,以帮助开发人员、评审人员和科学家评估软件的质量,以及特定软件是否准备好用于研究。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
Computational neuroscience.计算神经科学
Comput Math Methods Med. 2014;2014:120280. doi: 10.1155/2014/120280. Epub 2014 Mar 6.
7
KInNeSS: a modular framework for computational neuroscience.KInNeSS:一个用于计算神经科学的模块化框架。
Neuroinformatics. 2008 Winter;6(4):291-309. doi: 10.1007/s12021-008-9021-2. Epub 2008 Aug 10.
9
Data sharing for computational neuroscience.计算神经科学中的数据共享。
Neuroinformatics. 2008 Spring;6(1):47-55. doi: 10.1007/s12021-008-9009-y. Epub 2008 Feb 8.
10
Towards reproducible descriptions of neuronal network models.迈向对神经网络模型的可重复描述。
PLoS Comput Biol. 2009 Aug;5(8):e1000456. doi: 10.1371/journal.pcbi.1000456. Epub 2009 Aug 7.

引用本文的文献

5
c302: a multiscale framework for modelling the nervous system of .c302:用于建模 的神经系统的多尺度框架。
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758):20170379. doi: 10.1098/rstb.2017.0379.
6
NFTsim: Theory and Simulation of Multiscale Neural Field Dynamics.NFTsim:多尺度神经场动力学的理论与模拟。
PLoS Comput Biol. 2018 Aug 22;14(8):e1006387. doi: 10.1371/journal.pcbi.1006387. eCollection 2018 Aug.
8
Unit testing, model validation, and biological simulation.单元测试、模型验证和生物模拟。
F1000Res. 2016 Aug 10;5:1946. doi: 10.12688/f1000research.9315.1. eCollection 2016.
9
pypet: A Python Toolkit for Data Management of Parameter Explorations.pypet:用于参数探索数据管理的Python工具包。
Front Neuroinform. 2016 Aug 25;10:38. doi: 10.3389/fninf.2016.00038. eCollection 2016.
10
Is realistic neuronal modeling realistic?现实的神经元建模现实吗?
J Neurophysiol. 2016 Nov 1;116(5):2180-2209. doi: 10.1152/jn.00360.2016. Epub 2016 Aug 17.

本文引用的文献

2
Changing computational research. The challenges ahead.不断变化的计算研究。未来的挑战。
Source Code Biol Med. 2012 May 28;7(1):2. doi: 10.1186/1751-0473-7-2.
3
The case for open computer programs.支持开放计算机程序。
Nature. 2012 Feb 22;482(7386):485-8. doi: 10.1038/nature10836.
4
Hybrid spiking models.混合尖峰模型。
Philos Trans A Math Phys Eng Sci. 2010 Nov 13;368(1930):5061-70. doi: 10.1098/rsta.2010.0130.
8
Data sharing: Empty archives.数据共享:空档案。
Nature. 2009 Sep 10;461(7261):160-3. doi: 10.1038/461160a.
10
PyNN: A Common Interface for Neuronal Network Simulators.PyNN:神经元网络模拟器的通用接口。
Front Neuroinform. 2009 Jan 27;2:11. doi: 10.3389/neuro.11.011.2008. eCollection 2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验