Suppr超能文献

控制LOV结构域光循环化学过程的因素。

Factors that control the chemistry of the LOV domain photocycle.

作者信息

Zayner Josiah P, Sosnick Tobin R

机构信息

Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, United States of America.

Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, United States of America ; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America.

出版信息

PLoS One. 2014 Jan 27;9(1):e87074. doi: 10.1371/journal.pone.0087074. eCollection 2014.

Abstract

Algae, plants, bacteria and fungi contain Light-Oxygen-Voltage (LOV) domains that function as blue light sensors to control cellular responses to light. All LOV domains contain a bound flavin chromophore that is reduced upon photon absorption and forms a reversible, metastable covalent bond with a nearby cysteine residue. In Avena sativa LOV2 (AsLOV2), the photocycle is accompanied by an allosteric conformational change that activates the attached phototropin kinase in the full-length protein. Both the conformational change and formation of the cysteinyl-flavin adduct are stabilized by the reduction of the N5 atom in the flavin's isoalloxazine ring. In this study, we perform a mutational analysis to investigate the requirements for LOV2 to photocycle. We mutated all the residues that interact with the chromophore isoalloxazine ring to inert functional groups but none could fully inhibit the photocycle except those to the active-site cysteine. However, electronegative side chains in the vicinity of the chromophore accelerate the N5 deprotonation and the return to the dark state. Mutations to the N414 and Q513 residues identify a potential water gate and H₂O coordination sites. These residues affect the electronic nature of the chromophore and photocycle time by helping catalyze the N5 reduction leading to the completion of the photocycle. In addition, we demonstrate that dehydration leads to drastically slower photocycle times. Finally, to investigate the requirements of an active-site cysteine for photocycling, we moved the nearby cysteine to alternative locations and found that some variants can still photocycle. We propose a new model of the LOV domain photocycle that involves all of these components.

摘要

藻类、植物、细菌和真菌含有光氧电压(LOV)结构域,其作为蓝光传感器发挥作用,以控制细胞对光的反应。所有LOV结构域都含有一个结合的黄素发色团,该发色团在吸收光子后被还原,并与附近的半胱氨酸残基形成可逆的、亚稳态的共价键。在燕麦LOV2(AsLOV2)中,光循环伴随着变构构象变化,该变化激活全长蛋白中附着的向光素激酶。黄素异咯嗪环中N5原子的还原稳定了构象变化和半胱氨酰 - 黄素加合物的形成。在本研究中,我们进行了突变分析以研究LOV2进行光循环的条件。我们将所有与发色团异咯嗪环相互作用的残基突变为惰性官能团,但除了那些突变为活性位点半胱氨酸的残基外,没有一个能完全抑制光循环。然而,发色团附近的电负性侧链加速了N5去质子化并使其回到暗态。对N414和Q513残基的突变确定了一个潜在的水门和H₂O配位位点。这些残基通过帮助催化N5还原导致光循环完成,从而影响发色团的电子性质和光循环时间。此外,我们证明脱水会导致光循环时间大幅减慢。最后,为了研究活性位点半胱氨酸对光循环的必要性,我们将附近的半胱氨酸移至其他位置,发现一些变体仍然可以进行光循环。我们提出了一种涉及所有这些组分的LOV结构域光循环新模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061c/3903614/e334b5d13efe/pone.0087074.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验