Suppr超能文献

一种新型 TLR-9 激动剂 C792 抑制浆细胞样树突状细胞诱导的骨髓瘤细胞生长并增强硼替佐米的细胞毒性。

A novel TLR-9 agonist C792 inhibits plasmacytoid dendritic cell-induced myeloma cell growth and enhance cytotoxicity of bortezomib.

机构信息

Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

Dynavax Technologies, Berkeley, CA, USA.

出版信息

Leukemia. 2014 Aug;28(8):1716-24. doi: 10.1038/leu.2014.46. Epub 2014 Jan 30.

Abstract

Our prior study in multiple myeloma (MM) patients showed increased numbers of plasmacytoid dendritic cells (pDCs) in the bone marrow (BM), which both contribute to immune dysfunction as well as promote tumor cell growth, survival and drug resistance. Here we show that a novel Toll-like receptor (TLR-9) agonist C792 restores the ability of MM patient-pDCs to stimulate T-cell proliferation. Coculture of pDCs with MM cells induces MM cell growth; and importantly, C792 inhibits pDC-induced MM cell growth and triggers apoptosis. In contrast, treatment of either MM cells or pDCs alone with C792 does not affect the viability of either cell type. In agreement with our in vitro data, C792 inhibits pDC-induced MM cell growth in vivo in a murine xenograft model of human MM. Mechanistic studies show that C792 triggers maturation of pDCs, enhances interferon-α and interferon-λ secretion and activates TLR-9/MyD88 signaling axis. Finally, C792 enhances the anti-MM activity of bortezomib, lenalidomide, SAHA or melphalan. Collectively, our preclinical studies provide the basis for clinical trials of C792, either alone or in combination, to both improve immune function and overcome drug resistance in MM.

摘要

我们之前在多发性骨髓瘤(MM)患者中的研究表明,骨髓(BM)中的浆细胞样树突状细胞(pDC)数量增加,这既导致免疫功能障碍,又促进肿瘤细胞生长、存活和耐药性。在这里,我们表明一种新型 Toll 样受体(TLR-9)激动剂 C792 恢复了 MM 患者 pDC 刺激 T 细胞增殖的能力。pDC 与 MM 细胞共培养可诱导 MM 细胞生长;重要的是,C792 抑制 pDC 诱导的 MM 细胞生长并触发细胞凋亡。相比之下,单独用 C792 处理 MM 细胞或 pDC 均不会影响这两种细胞类型的活力。与我们的体外数据一致,C792 在人 MM 的小鼠异种移植模型中抑制 pDC 诱导的 MM 细胞生长。机制研究表明,C792 触发 pDC 的成熟,增强干扰素-α和干扰素-λ的分泌,并激活 TLR-9/MyD88 信号通路。最后,C792 增强硼替佐米、来那度胺、SAHA 或美法仑对 MM 的抗 MM 活性。总之,我们的临床前研究为 C792 的临床试验提供了依据,无论是单独使用还是联合使用,都可以改善 MM 的免疫功能并克服耐药性。

相似文献

2
3
In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells.
Clin Cancer Res. 2011 Aug 15;17(16):5311-21. doi: 10.1158/1078-0432.CCR-11-0476. Epub 2011 Jun 30.
6
Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis.
Blood. 2007 Sep 1;110(5):1656-63. doi: 10.1182/blood-2007-03-081240. Epub 2007 May 17.
7
In vitro cytotoxicity of the novel antimyeloma agents perifosine, bortezomib and lenalidomide against different cell lines.
Invest New Drugs. 2012 Apr;30(2):480-9. doi: 10.1007/s10637-010-9576-2. Epub 2010 Nov 16.
9
Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma.
Blood. 2012 Oct 18;120(16):3260-70. doi: 10.1182/blood-2011-10-386789. Epub 2012 Aug 29.
10
Intracellular NAD⁺ depletion enhances bortezomib-induced anti-myeloma activity.
Blood. 2013 Aug 15;122(7):1243-55. doi: 10.1182/blood-2013-02-483511. Epub 2013 Jul 3.

引用本文的文献

1
Multi-omics and functional characterization of the tumor-killing capacity of Imiquimod-activated plasmacytoid dendritic cells.
iScience. 2025 May 14;28(6):112670. doi: 10.1016/j.isci.2025.112670. eCollection 2025 Jun 20.
2
Enhancing plasmacytoid dendritic cell functionality with retinoic acid for improved multiple myeloma therapy.
Mol Ther Oncol. 2025 May 14;33(2):200992. doi: 10.1016/j.omton.2025.200992. eCollection 2025 Jun 18.
3
Advancements in microenvironment-based therapies: transforming the landscape of multiple myeloma treatment.
Front Oncol. 2024 Jul 17;14:1413494. doi: 10.3389/fonc.2024.1413494. eCollection 2024.
5
6
Plasmacytoid Dendritic Cells in Patients with MGUS and Multiple Myeloma.
J Clin Med. 2021 Aug 20;10(16):3717. doi: 10.3390/jcm10163717.
7
The Immune Microenvironment in Multiple Myeloma: Friend or Foe?
Cancers (Basel). 2021 Feb 5;13(4):625. doi: 10.3390/cancers13040625.
8
Targeting ubiquitin-specific protease-7 in plasmacytoid dendritic cells triggers anti-myeloma immunity.
Leukemia. 2021 Aug;35(8):2435-2438. doi: 10.1038/s41375-021-01129-0. Epub 2021 Jan 24.
10
Multiple myeloma: the (r)evolution of current therapy and a glance into future.
Haematologica. 2020 Oct 1;105(10):2358-2367. doi: 10.3324/haematol.2020.247015.

本文引用的文献

1
TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo.
Blood. 2013 Feb 21;121(8):1304-15. doi: 10.1182/blood-2012-07-442590. Epub 2013 Jan 3.
2
MyD88: a critical adaptor protein in innate immunity signal transduction.
J Immunol. 2013 Jan 1;190(1):3-4. doi: 10.4049/jimmunol.1203103.
4
Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells.
J Immunol. 2012 Sep 15;189(6):2735-45. doi: 10.4049/jimmunol.1102038. Epub 2012 Aug 13.
5
The transcriptional regulator NAB2 reveals a two-step induction of TRAIL in activated plasmacytoid DCs.
Eur J Immunol. 2012 Nov;42(11):3019-27. doi: 10.1002/eji.201242385. Epub 2012 Sep 12.
6
Cell death via DR5, but not DR4, is regulated by p53 in myeloma cells.
Cancer Res. 2012 Sep 1;72(17):4562-73. doi: 10.1158/0008-5472.CAN-12-0487. Epub 2012 Jun 27.
8
The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma.
J Clin Oncol. 2012 Feb 1;30(4):445-52. doi: 10.1200/JCO.2011.37.8919. Epub 2012 Jan 3.
9
Decisions about dendritic cells: past, present, and future.
Annu Rev Immunol. 2012;30:1-22. doi: 10.1146/annurev-immunol-100311-102839. Epub 2011 Nov 17.
10
Plasmacytoid dendritic cells: recent progress and open questions.
Annu Rev Immunol. 2011;29:163-83. doi: 10.1146/annurev-immunol-031210-101345.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验