Division of Mitochondrial Dynamics, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49076 Osnabrück, Germany.
Niedersachsen-Professur für Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49076 Osnabrück, Germany.
Nat Commun. 2014;5:3103. doi: 10.1038/ncomms4103.
Ion-driven ATP synthesis by rotary F0F1 ATP-synthase powers aerobic life. Since Mitchell's seminal hypothesis, this synthesis has been discussed in terms of the proton-motive force between two bulk phases, each in equilibrium. In active mitochondria, a steady proton flow cycles between pumps and the distant ATP synthase. Here we determine the lateral pH profile along the p-side of cristae in situ by attaching a ratiometric fluorescent pH-sensitive GFP variant to OXPHOS complex IV, a proton pump, and the dimeric F0F1 ATP-synthase, a proton consumer. In respiring HeLa cells, we observe that the local pH at F0F1 dimers is 0.3 units less acidic than that at complex IV. This finding is consistent with the calculated pH profile for steady proton diffusion from CIV to F0F1. The observed lateral variation in the proton-motive force necessitates a modification to Peter Mitchell's chemiosmotic proposal. The experimental technique can be extended to other pH-dependent reactions in membrane microcompartments.
离子驱动的旋转 F0F1 ATP 合酶通过 ATP 合成为需氧生命提供动力。自米切尔的开创性假说以来,这种合成一直以来都是根据两个大块相之间的质子动力势来讨论的,每个相都处于平衡状态。在活跃的线粒体中,质子流在泵和远处的 ATP 合酶之间循环。在这里,我们通过将比率荧光 pH 敏感 GFP 变体附着到 OXPHOS 复合物 IV(质子泵)和二聚体 F0F1 ATP 合酶(质子消耗器)上来原位确定嵴中 p 侧的横向 pH 分布。在呼吸的 HeLa 细胞中,我们观察到 F0F1 二聚体处的局部 pH 比复合物 IV 处低 0.3 个单位。这一发现与从 CIV 到 F0F1 的稳定质子扩散的计算 pH 分布一致。所观察到的质子动力势的横向变化需要对彼得米切尔的化学渗透假说进行修改。该实验技术可以扩展到膜微区室中的其他依赖 pH 的反应。