Suppr超能文献

超分辨率显微镜揭示了神经元线粒体中UCP4与F0F1-ATP合酶的空间分离。

Superresolution microscopy reveals spatial separation of UCP4 and F0F1-ATP synthase in neuronal mitochondria.

作者信息

Klotzsch Enrico, Smorodchenko Alina, Löfler Lukas, Moldzio Rudolf, Parkinson Elena, Schütz Gerhard J, Pohl Elena E

机构信息

Institute of Applied Physics, Vienna University of Technology, A-1040 Vienna, Austria; and

Institutes of Physiology, Pathophysiology and Biophysics and.

出版信息

Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):130-5. doi: 10.1073/pnas.1415261112. Epub 2014 Dec 22.

Abstract

Because different proteins compete for the proton gradient across the inner mitochondrial membrane, an efficient mechanism is required for allocation of associated chemical potential to the distinct demands, such as ATP production, thermogenesis, regulation of reactive oxygen species (ROS), etc. Here, we used the superresolution technique dSTORM (direct stochastic optical reconstruction microscopy) to visualize several mitochondrial proteins in primary mouse neurons and test the hypothesis that uncoupling protein 4 (UCP4) and F0F1-ATP synthase are spatially separated to eliminate competition for the proton motive force. We found that UCP4, F0F1-ATP synthase, and the mitochondrial marker voltage-dependent anion channel (VDAC) have various expression levels in different mitochondria, supporting the hypothesis of mitochondrial heterogeneity. Our experimental results further revealed that UCP4 is preferentially localized in close vicinity to VDAC, presumably at the inner boundary membrane, whereas F0F1-ATP synthase is more centrally located at the cristae membrane. The data suggest that UCP4 cannot compete for protons because of its spatial separation from both the proton pumps and the ATP synthase. Thus, mitochondrial morphology precludes UCP4 from acting as an uncoupler of oxidative phosphorylation but is consistent with the view that UCP4 may dissipate the excessive proton gradient, which is usually associated with ROS production.

摘要

由于不同的蛋白质会竞争跨越线粒体内膜的质子梯度,因此需要一种高效的机制,以便将相关的化学势能分配到不同的需求中,如ATP生成、产热、活性氧(ROS)调节等。在此,我们使用超分辨率技术dSTORM(直接随机光学重建显微镜)来观察原代小鼠神经元中的几种线粒体蛋白,并验证解偶联蛋白4(UCP4)和F0F1 - ATP合酶在空间上是分离的这一假设,以消除对质子动力的竞争。我们发现,UCP4、F0F1 - ATP合酶和线粒体标记物电压依赖性阴离子通道(VDAC)在不同的线粒体中具有不同的表达水平,这支持了线粒体异质性的假设。我们的实验结果进一步表明,UCP4优先定位于靠近VDAC的位置,可能位于内膜边界,而F0F1 - ATP合酶则更集中地位于嵴膜上。数据表明,由于UCP4与质子泵和ATP合酶在空间上分离,因此它无法竞争质子。因此,线粒体形态使UCP4无法作为氧化磷酸化解偶联剂发挥作用,但这与UCP4可能耗散通常与ROS产生相关的过量质子梯度的观点一致。

相似文献

4
Role of mitochondrial uncoupling protein 4 in rat inner ear.线粒体解偶联蛋白 4 在大鼠内耳中的作用。
Mol Cell Neurosci. 2011 Aug;47(4):244-53. doi: 10.1016/j.mcn.2011.03.002. Epub 2011 Mar 11.

引用本文的文献

8
Proton Migration on Top of Charged Membranes.质子在荷电膜上的迁移。
Biomolecules. 2023 Feb 11;13(2):352. doi: 10.3390/biom13020352.

本文引用的文献

2
Super-resolution microscopy of mitochondria.线粒体的超分辨率显微镜技术。
Curr Opin Chem Biol. 2014 Jun;20:9-15. doi: 10.1016/j.cbpa.2014.03.019. Epub 2014 Apr 25.
8
The connection between inner membrane topology and mitochondrial function.内膜拓扑结构与线粒体功能之间的联系。
J Mol Cell Cardiol. 2013 Sep;62:51-7. doi: 10.1016/j.yjmcc.2013.05.001. Epub 2013 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验