Suppr超能文献

连接蛋白/间隙连接蛋白通道在传染病中的作用。

Role of connexin/pannexin containing channels in infectious diseases.

机构信息

Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, USA; Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, USA.

出版信息

FEBS Lett. 2014 Apr 17;588(8):1389-95. doi: 10.1016/j.febslet.2014.01.030. Epub 2014 Jan 28.

Abstract

In recent years it has become evident that gap junctions and hemichannels, in concert with extracellular ATP and purinergic receptors, play key roles in several physiological processes and pathological conditions. However, only recently has their importance in infectious diseases been explored, likely because early reports indicated that connexin containing channels were completely inactivated under inflammatory conditions, and therefore no further research was performed. However, recent evidence indicates that several infectious agents take advantage of these communication systems to enhance inflammation and apoptosis, as well as to participate in the infectious cycle of several pathogens. In the current review, we will discuss the role of these channels/receptors in the pathogenesis of several infectious diseases and the possibilities of generating novel therapeutic approaches to reduce or prevent these diseases.

摘要

近年来,缝隙连接和半通道与细胞外 ATP 和嘌呤能受体一起,在几种生理过程和病理状况中发挥着关键作用,这一点已经变得很明显。然而,直到最近,它们在传染病中的重要性才被探索出来,这可能是因为早期的报告表明,连接蛋白通道在炎症条件下完全失活,因此没有进一步的研究。然而,最近的证据表明,几种感染因子利用这些通讯系统来增强炎症和细胞凋亡,并参与几种病原体的感染周期。在当前的综述中,我们将讨论这些通道/受体在几种传染病发病机制中的作用,以及产生新的治疗方法来减少或预防这些疾病的可能性。

相似文献

1
Role of connexin/pannexin containing channels in infectious diseases.
FEBS Lett. 2014 Apr 17;588(8):1389-95. doi: 10.1016/j.febslet.2014.01.030. Epub 2014 Jan 28.
2
The role of Pannexin-1 channels, ATP, and purinergic receptors in the pathogenesis of HIV and SARS-CoV-2.
Curr Opin Pharmacol. 2023 Dec;73:102404. doi: 10.1016/j.coph.2023.102404. Epub 2023 Sep 19.
3
Differentiating connexin hemichannels and pannexin channels in cellular ATP release.
FEBS Lett. 2014 Apr 17;588(8):1379-88. doi: 10.1016/j.febslet.2014.02.004. Epub 2014 Feb 15.
4
The participation of plasma membrane hemichannels to purinergic signaling.
Biochim Biophys Acta. 2013 Jan;1828(1):79-93. doi: 10.1016/j.bbamem.2012.01.002. Epub 2012 Jan 12.
5
The role of Pannexin-1 channels and extracellular ATP in the pathogenesis of the human immunodeficiency virus.
Purinergic Signal. 2021 Dec;17(4):563-576. doi: 10.1007/s11302-021-09817-3. Epub 2021 Sep 20.
6
The role of connexin and pannexin containing channels in the innate and acquired immune response.
Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):154-165. doi: 10.1016/j.bbamem.2017.05.015. Epub 2017 May 27.
7
Role of gap junctions and hemichannels in parasitic infections.
Biomed Res Int. 2013;2013:589130. doi: 10.1155/2013/589130. Epub 2013 Oct 23.
8
Mechanisms of ATP release in pain: role of pannexin and connexin channels.
Purinergic Signal. 2021 Dec;17(4):549-561. doi: 10.1007/s11302-021-09822-6. Epub 2021 Nov 18.
9
Connexin and pannexin hemichannels in inflammatory responses of glia and neurons.
Brain Res. 2012 Dec 3;1487:3-15. doi: 10.1016/j.brainres.2012.08.042. Epub 2012 Sep 10.
10
Pannexin channels are not gap junction hemichannels.
Channels (Austin). 2011 May-Jun;5(3):193-7. doi: 10.4161/chan.5.3.15765. Epub 2011 May 1.

引用本文的文献

1
Coordination of innate immune responses by connexins.
Front Immunol. 2025 May 22;16:1594015. doi: 10.3389/fimmu.2025.1594015. eCollection 2025.
2
Connexin 43 and Pannexin 1 hemichannels as endogenous regulators of innate immunity in sepsis.
Front Immunol. 2024 Dec 23;15:1523306. doi: 10.3389/fimmu.2024.1523306. eCollection 2024.
3
Modulation of connexin 43 in viral infections.
Tumour Virus Res. 2024 Dec;18:200296. doi: 10.1016/j.tvr.2024.200296. Epub 2024 Nov 8.
4
Pathogenic mechanisms of human immunodeficiency virus (HIV)-associated pain.
Mol Psychiatry. 2023 Sep;28(9):3613-3624. doi: 10.1038/s41380-023-02294-7. Epub 2023 Oct 19.
5
Role of Cx43 in iPSC-CM Damage Induced by Microwave Radiation.
Int J Mol Sci. 2023 Aug 8;24(16):12533. doi: 10.3390/ijms241612533.
6
Probenecid affects muscle Ca2+ homeostasis and contraction independently from pannexin channel block.
J Gen Physiol. 2023 Apr 3;155(4). doi: 10.1085/jgp.202213203. Epub 2023 Feb 23.
7
Contribution of large-pore channels to inflammation induced by microorganisms.
Front Cell Dev Biol. 2023 Jan 9;10:1094362. doi: 10.3389/fcell.2022.1094362. eCollection 2022.
8
cGAS/STING and innate brain inflammation following acute high-fat feeding.
Front Immunol. 2022 Sep 29;13:1012594. doi: 10.3389/fimmu.2022.1012594. eCollection 2022.
9
Cross-Activation of Hemichannels/Gap Junctions and Immunoglobulin-Like Domains in Innate-Adaptive Immune Responses.
Front Immunol. 2022 Jul 15;13:882706. doi: 10.3389/fimmu.2022.882706. eCollection 2022.
10
Pannexin-1 channel opening is critical for COVID-19 pathogenesis.
iScience. 2021 Dec 17;24(12):103478. doi: 10.1016/j.isci.2021.103478. Epub 2021 Nov 19.

本文引用的文献

1
HIV increases the release of dickkopf-1 protein from human astrocytes by a Cx43 hemichannel-dependent mechanism.
J Neurochem. 2014 Mar;128(5):752-63. doi: 10.1111/jnc.12492. Epub 2013 Nov 13.
5
Pannexin1 hemichannels are critical for HIV infection of human primary CD4+ T lymphocytes.
J Leukoc Biol. 2013 Sep;94(3):399-407. doi: 10.1189/jlb.0512249. Epub 2013 Mar 1.
6
ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation.
Cell Death Dis. 2012 Oct 11;3(10):e403. doi: 10.1038/cddis.2012.144.
9
Paracrine signaling through plasma membrane hemichannels.
Biochim Biophys Acta. 2013 Jan;1828(1):35-50. doi: 10.1016/j.bbamem.2012.07.002. Epub 2012 Jul 13.
10
Multifaceted roles of purinergic receptors in viral infection.
Microbes Infect. 2012 Nov;14(14):1278-83. doi: 10.1016/j.micinf.2012.05.010. Epub 2012 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验