Fan Zhenzhen, Chen Di, Deng Cheri X
Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan, USA.
Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan, USA.
Ultrasound Med Biol. 2014 Jun;40(6):1260-72. doi: 10.1016/j.ultrasmedbio.2013.12.002. Epub 2014 Jan 30.
Ultrasound-driven microbubble activities have been exploited to transiently disrupt the cell membrane (sonoporation) for non-viral intracellular drug delivery and gene transfection both in vivo and in vitro. In this study, we investigated the dynamic behaviors of a population of microbubbles exposed to pulsed ultrasound and their impact on adherent cells in terms of intracellular delivery and cell viability. By systematically analyzing the bubble activities at time scales relevant to pulsed ultrasound exposure, we identified two quantification parameters that categorize the diverse bubble activities subjected to various ultrasound conditions into three characteristic behaviors: stable cavitation/aggregation (type I), growth/coalescence and translation (type II) and localized inertial cavitation/collapse (type III). Correlation of the bubble activities with sonoporation outcome suggested that type III behavior resulted in intracellular delivery, whereas type II behavior caused the death of a large number of cells. These results provide useful insights for rational selection of ultrasound parameters to optimize outcomes of sonoporation and other applications that exploit the use of ultrasound-driven bubble activities.
超声驱动的微泡活性已被用于在体内和体外短暂破坏细胞膜(声孔效应),以实现非病毒细胞内药物递送和基因转染。在本研究中,我们研究了暴露于脉冲超声的一群微泡的动态行为,以及它们在细胞内递送和细胞活力方面对贴壁细胞的影响。通过系统地分析与脉冲超声暴露相关时间尺度下的气泡活性,我们确定了两个量化参数,这些参数将在各种超声条件下的不同气泡活性分为三种特征行为:稳定空化/聚集(I型)、生长/合并和平移(II型)以及局部惯性空化/崩溃(III型)。气泡活性与声孔效应结果的相关性表明,III型行为导致细胞内递送,而II型行为导致大量细胞死亡。这些结果为合理选择超声参数以优化声孔效应及其他利用超声驱动气泡活性的应用的结果提供了有用的见解。