Kohne Meghan, Zhu Chen, Warncke Kurt
Department of Physics, Emory University , Atlanta, Georgia 30322, United States.
Biochemistry. 2017 Jun 27;56(25):3257-3264. doi: 10.1021/acs.biochem.7b00294. Epub 2017 Jun 15.
The kinetics of the substrate radical rearrangement reaction step in B-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium are measured over a 92 K temperature range. The observed first-order rate constants display a piecewise-continuous Arrhenius dependence, with linear regions over 295 → 220 K (monoexponential) and 214 → 203 K (biexponential) that are delineated by a kinetic bifurcation and kinks at 219 and 217 K, respectively. The results are interpreted by using a free energy landscape model and derived microscopic kinetic mechanism. The bifurcation and kink transitions correspond to the effective quenching of two distinct sets of native collective protein configurational fluctuations that (1) reconfigure the protein within the substrate radical free energy minimum, in a reaction-enabling step, and (2) create the protein configurations associated with the chemical step. Below 217 K, the substrate radical decay reaction persists. Increases in activation enthalpy and entropy of both the microscopic enabling and reaction steps indicate that this non-native reaction coordinate is conducted by local, incremental fluctuations. Continuity in the Arrhenius relations indicates that the same sets of protein groups and interactions mediate the rearrangement over the 295 to 203 K range, but with a repertoire of configurations below 217 K that is restricted, relative to the native configurations accessible above 219 K. The experimental features of a culled reaction step, first-order kinetic measurements, and wide room-to-cryogenic temperature range, allow the direct demonstration and kinetic characterization of protein dynamical contributions to the core adiabatic, bond-making/bond-breaking reaction in EAL.
在92K的温度范围内,对鼠伤寒沙门氏菌中B-依赖型乙醇胺氨裂解酶(EAL)的底物自由基重排反应步骤的动力学进行了测量。观察到的一级速率常数呈现出分段连续的阿伦尼乌斯依赖性,在295→220K(单指数)和214→203K(双指数)范围内有线性区域,分别由动力学分支以及在219K和217K处的扭结所界定。通过使用自由能景观模型和推导的微观动力学机制对结果进行了解释。分支和扭结转变对应于两组不同的天然集体蛋白质构象波动的有效淬灭,其中(1)在底物自由基自由能最小值内重新配置蛋白质,这是一个使反应能够进行的步骤,(2)产生与化学步骤相关的蛋白质构象。在217K以下,底物自由基衰变反应持续存在。微观使能步骤和反应步骤的活化焓和熵的增加表明,这种非天然反应坐标是由局部的、渐进的波动进行的。阿伦尼乌斯关系的连续性表明,相同的蛋白质基团和相互作用组在295至203K范围内介导重排,但相对于219K以上可及的天然构象而言,217K以下的构象库受到限制。剔除反应步骤的实验特征、一级动力学测量以及从室温到低温的宽温度范围,使得能够直接证明并对蛋白质动力学对EAL中核心绝热、键形成/键断裂反应的贡献进行动力学表征。