Suppr超能文献

低频复发事件历史的离散时间生存因子混合分析

Discrete-Time Survival Factor Mixture Analysis for Low-Frequency Recurrent Event Histories.

作者信息

Masyn Katherine E

机构信息

University of California at Davis.

出版信息

Res Hum Dev. 2009;6(2-3):165-194. doi: 10.1080/15427600902911270.

Abstract

In this article, the latent class analysis framework for modeling single event discrete-time survival data is extended to low-frequency recurrent event histories. A partial gap time model, parameterized as a restricted factor mixture model, is presented and illustrated using juvenile offending data. This model accommodates event-specific baseline hazard probabilities and covariate effects; event recurrences within a single time period; and accounts for within- and between-subject correlations of event times. This approach expands the family of latent variable survival models in a way that allows researchers to explicitly address questions about unobserved heterogeneity in the timing of events across the lifespan.

摘要

在本文中,用于对单事件离散时间生存数据进行建模的潜在类别分析框架被扩展到低频复发事件史。提出了一个部分间隔时间模型,将其参数化为受限因子混合模型,并使用青少年犯罪数据进行了说明。该模型考虑了特定事件的基线风险概率和协变量效应;单个时间段内的事件复发;并考虑了事件时间的个体内和个体间相关性。这种方法以一种允许研究人员明确解决关于整个生命周期中事件发生时间未观察到的异质性问题的方式扩展了潜在变量生存模型家族。

相似文献

1
Discrete-Time Survival Factor Mixture Analysis for Low-Frequency Recurrent Event Histories.
Res Hum Dev. 2009;6(2-3):165-194. doi: 10.1080/15427600902911270.
2
Bayesian regression model for recurrent event data with event-varying covariate effects and event effect.
J Appl Stat. 2018;45(7):1260-1276. doi: 10.1080/02664763.2017.1367368. Epub 2017 Aug 26.
3
Testing Measurement Invariance Across Unobserved Groups: The Role of Covariates in Factor Mixture Modeling.
Educ Psychol Meas. 2021 Feb;81(1):61-89. doi: 10.1177/0013164420925122. Epub 2020 May 28.
4
Semiparametric time-to-event modeling in the presence of a latent progression event.
Biometrics. 2017 Jun;73(2):463-472. doi: 10.1111/biom.12580. Epub 2016 Aug 24.
5
Investigating Approaches to Estimating Covariate Effects in Growth Mixture Modeling: A Simulation Study.
Educ Psychol Meas. 2017 Oct;77(5):766-791. doi: 10.1177/0013164416653789. Epub 2016 Jun 15.
6
Latent variable mixture modeling in psychiatric research--a review and application.
Psychol Med. 2016 Feb;46(3):457-67. doi: 10.1017/S0033291715002305. Epub 2015 Nov 3.
7
Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data.
J Am Stat Assoc. 2004 Dec;99(468):1153-1165. doi: 10.1198/016214504000001033.
8
Joint analysis of time-to-event and multiple binary indicators of latent classes.
Biometrics. 2004 Mar;60(1):85-92. doi: 10.1111/j.0006-341X.2004.00141.x.
9
A discrete-time Multiple Event Process Survival Mixture (MEPSUM) model.
Psychol Methods. 2014 Jun;19(2):251-64. doi: 10.1037/a0034281. Epub 2013 Sep 30.

引用本文的文献

1
Smartphone Addiction, Social Support, and Cybercrime Victimization: A Discrete Survival and Growth Mixture Model.
Psychosoc Interv. 2022 Jan 1;31(1):59-66. doi: 10.5093/pi2022a3. eCollection 2022 Jan.
2
Do Early-Life Social, Behavioral, and Health Exposures Increase Later-Life Arthritis Incidence?
Res Aging. 2022 Aug-Sep;44(7-8):479-493. doi: 10.1177/01640275211044979. Epub 2021 Oct 19.
3
A Semiparametric Approach for Modeling Not-Reached Items.
Educ Psychol Meas. 2019 Feb;79(1):170-199. doi: 10.1177/0013164417749679. Epub 2017 Dec 27.
4
Multilevel survival analysis: Studying the timing of children's recurring behaviors.
Dev Psychol. 2019 Jan;55(1):53-65. doi: 10.1037/dev0000619. Epub 2018 Oct 18.
7
Body mass trajectories and mortality among older adults: a joint growth mixture-discrete-time survival analysis.
Gerontologist. 2014 Apr;54(2):221-31. doi: 10.1093/geront/gns164. Epub 2013 Jan 25.
10
A statewide trial of the SafeCare home-based services model with parents in Child Protective Services.
Pediatrics. 2012 Mar;129(3):509-15. doi: 10.1542/peds.2011-1840. Epub 2012 Feb 20.

本文引用的文献

1
Statistical and substantive checking in growth mixture modeling: comment on Bauer and Curran (2003).
Psychol Methods. 2003 Sep;8(3):369-77; discussion 384-93. doi: 10.1037/1082-989X.8.3.369.
2
Finite mixture modeling with mixture outcomes using the EM algorithm.
Biometrics. 1999 Jun;55(2):463-9. doi: 10.1111/j.0006-341x.1999.00463.x.
3
Random-effects regression analysis of correlated grouped-time survival data.
Stat Methods Med Res. 2000 Apr;9(2):161-79. doi: 10.1177/096228020000900206.
4
Survival analysis for recurrent event data: an application to childhood infectious diseases.
Stat Med. 2000 Jan 15;19(1):13-33. doi: 10.1002/(sici)1097-0258(20000115)19:1<13::aid-sim279>3.0.co;2-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验