Masyn Katherine E
University of California at Davis.
Res Hum Dev. 2009;6(2-3):165-194. doi: 10.1080/15427600902911270.
In this article, the latent class analysis framework for modeling single event discrete-time survival data is extended to low-frequency recurrent event histories. A partial gap time model, parameterized as a restricted factor mixture model, is presented and illustrated using juvenile offending data. This model accommodates event-specific baseline hazard probabilities and covariate effects; event recurrences within a single time period; and accounts for within- and between-subject correlations of event times. This approach expands the family of latent variable survival models in a way that allows researchers to explicitly address questions about unobserved heterogeneity in the timing of events across the lifespan.
在本文中,用于对单事件离散时间生存数据进行建模的潜在类别分析框架被扩展到低频复发事件史。提出了一个部分间隔时间模型,将其参数化为受限因子混合模型,并使用青少年犯罪数据进行了说明。该模型考虑了特定事件的基线风险概率和协变量效应;单个时间段内的事件复发;并考虑了事件时间的个体内和个体间相关性。这种方法以一种允许研究人员明确解决关于整个生命周期中事件发生时间未观察到的异质性问题的方式扩展了潜在变量生存模型家族。