Little Mark P, Kukush Alexander G, Masiuk Sergii V, Shklyar Sergiy, Carroll Raymond J, Lubin Jay H, Kwon Deukwoo, Brenner Alina V, Tronko Mykola D, Mabuchi Kiyohiko, Bogdanova Tetiana I, Hatch Maureen, Zablotska Lydia B, Tereshchenko Valeriy P, Ostroumova Evgenia, Bouville André C, Drozdovitch Vladimir, Chepurny Mykola I, Kovgan Lina N, Simon Steven L, Shpak Victor M, Likhtarev Ilya A
Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America.
Ukrainian Radiation Protection Institute, Kyiv, Ukraine ; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
PLoS One. 2014 Jan 29;9(1):e85723. doi: 10.1371/journal.pone.0085723. eCollection 2014.
The 1986 accident at the Chernobyl nuclear power plant remains the most serious nuclear accident in history, and excess thyroid cancers, particularly among those exposed to releases of iodine-131 remain the best-documented sequelae. Failure to take dose-measurement error into account can lead to bias in assessments of dose-response slope. Although risks in the Ukrainian-US thyroid screening study have been previously evaluated, errors in dose assessments have not been addressed hitherto. Dose-response patterns were examined in a thyroid screening prevalence cohort of 13,127 persons aged <18 at the time of the accident who were resident in the most radioactively contaminated regions of Ukraine. We extended earlier analyses in this cohort by adjusting for dose error in the recently developed TD-10 dosimetry. Three methods of statistical correction, via two types of regression calibration, and Monte Carlo maximum-likelihood, were applied to the doses that can be derived from the ratio of thyroid activity to thyroid mass. The two components that make up this ratio have different types of error, Berkson error for thyroid mass and classical error for thyroid activity. The first regression-calibration method yielded estimates of excess odds ratio of 5.78 Gy(-1) (95% CI 1.92, 27.04), about 7% higher than estimates unadjusted for dose error. The second regression-calibration method gave an excess odds ratio of 4.78 Gy(-1) (95% CI 1.64, 19.69), about 11% lower than unadjusted analysis. The Monte Carlo maximum-likelihood method produced an excess odds ratio of 4.93 Gy(-1) (95% CI 1.67, 19.90), about 8% lower than unadjusted analysis. There are borderline-significant (p = 0.101-0.112) indications of downward curvature in the dose response, allowing for which nearly doubled the low-dose linear coefficient. In conclusion, dose-error adjustment has comparatively modest effects on regression parameters, a consequence of the relatively small errors, of a mixture of Berkson and classical form, associated with thyroid dose assessment.
1986年切尔诺贝利核电站事故仍是历史上最严重的核事故,甲状腺癌增多,尤其是那些接触过碘-131释放物的人群中甲状腺癌增多,仍是记录最完备的后遗症。未考虑剂量测量误差会导致剂量反应斜率评估出现偏差。尽管此前已对乌克兰-美国甲状腺筛查研究中的风险进行了评估,但剂量评估误差迄今尚未得到解决。在事故发生时年龄小于18岁、居住在乌克兰放射性污染最严重地区的13127人的甲状腺筛查患病率队列中,研究了剂量反应模式。我们通过在最近开发的TD-10剂量测定法中对剂量误差进行调整,扩展了该队列早期的分析。三种统计校正方法,即通过两种类型的回归校准和蒙特卡洛最大似然法,应用于可从甲状腺活性与甲状腺质量之比得出的剂量。构成该比率的两个成分具有不同类型的误差,甲状腺质量的伯克森误差和甲状腺活性的经典误差。第一种回归校准方法得出的超额比值比估计为5.78 Gy-1(95%可信区间1.92, 27.04),比未对剂量误差进行调整的估计值高约7%。第二种回归校准方法得出的超额比值比为4.78 Gy-1(95%可信区间1.64, 19.69),比未调整分析低约11%。蒙特卡洛最大似然法得出的超额比值比为4.93 Gy-1(95%可信区间1.67, 19.90),比未调整分析低约8%。有边缘显著(p = 0.101 - 0.112)的迹象表明剂量反应呈向下弯曲,考虑到这一点,低剂量线性系数几乎增加了一倍。总之,剂量误差调整对回归参数的影响相对较小,这是与甲状腺剂量评估相关的相对较小的伯克森和经典形式混合误差的结果。