Suppr超能文献

情感与语言:效价和唤醒水平影响单词识别。

Emotion and language: valence and arousal affect word recognition.

作者信息

Kuperman Victor, Estes Zachary, Brysbaert Marc, Warriner Amy Beth

机构信息

McMaster University, Canada.

Bocconi University, Italy.

出版信息

J Exp Psychol Gen. 2014 Jun;143(3):1065-1081. doi: 10.1037/a0035669. Epub 2014 Feb 3.

Abstract

Emotion influences most aspects of cognition and behavior, but emotional factors are conspicuously absent from current models of word recognition. The influence of emotion on word recognition has mostly been reported in prior studies on the automatic vigilance for negative stimuli, but the precise nature of this relationship is unclear. Various models of automatic vigilance have claimed that the effect of valence on response times is categorical, an inverted U, or interactive with arousal. In the present study, we used a sample of 12,658 words and included many lexical and semantic control factors to determine the precise nature of the effects of arousal and valence on word recognition. Converging empirical patterns observed in word-level and trial-level data from lexical decision and naming indicate that valence and arousal exert independent monotonic effects: Negative words are recognized more slowly than positive words, and arousing words are recognized more slowly than calming words. Valence explained about 2% of the variance in word recognition latencies, whereas the effect of arousal was smaller. Valence and arousal do not interact, but both interact with word frequency, such that valence and arousal exert larger effects among low-frequency words than among high-frequency words. These results necessitate a new model of affective word processing whereby the degree of negativity monotonically and independently predicts the speed of responding. This research also demonstrates that incorporating emotional factors, especially valence, improves the performance of models of word recognition.

摘要

情绪影响认知和行为的大多数方面,但当前的单词识别模型中明显没有考虑情感因素。情绪对单词识别的影响大多在先前关于对负面刺激的自动警觉性的研究中有所报道,但这种关系的确切性质尚不清楚。各种自动警觉性模型声称,效价对反应时间的影响是分类的、倒U形的,或者与唤醒相互作用。在本研究中,我们使用了12658个单词的样本,并纳入了许多词汇和语义控制因素,以确定唤醒和效价对单词识别影响的确切性质。在词汇判断和命名的单词层面和试验层面数据中观察到的一致实证模式表明,效价和唤醒发挥独立的单调效应:负面单词的识别比正面单词慢,唤醒性单词的识别比平静性单词慢。效价解释了单词识别潜伏期约2%的方差变异,而唤醒的影响较小。效价和唤醒不相互作用,但二者都与词频相互作用,因此效价和唤醒在低频词中比在高频词中产生更大的影响。这些结果需要一个新的情感单词加工模型,即消极程度单调且独立地预测反应速度。这项研究还表明,纳入情感因素,尤其是效价,可提高单词识别模型的性能。

相似文献

1
Emotion and language: valence and arousal affect word recognition.
J Exp Psychol Gen. 2014 Jun;143(3):1065-1081. doi: 10.1037/a0035669. Epub 2014 Feb 3.
3
The graded effect of valence on word recognition in Spanish.
J Exp Psychol Learn Mem Cogn. 2019 May;45(5):851-868. doi: 10.1037/xlm0000616. Epub 2018 Jul 9.
4
Beyond Valence and Arousal: The Role of Age of Acquisition in Emotion Word Recognition.
Behav Sci (Basel). 2023 Jul 9;13(7):568. doi: 10.3390/bs13070568.
5
P1 and beyond: functional separation of multiple emotion effects in word recognition.
Psychophysiology. 2012 Jul;49(7):959-69. doi: 10.1111/j.1469-8986.2012.01381.x. Epub 2012 May 17.
6
Does emotional valence modulate word recognition? A behavioral study manipulating frequency and arousal.
Acta Psychol (Amst). 2022 Mar;223:103484. doi: 10.1016/j.actpsy.2021.103484. Epub 2022 Jan 3.
7
Emotion and memory: a recognition advantage for positive and negative words independent of arousal.
Cognition. 2013 Dec;129(3):530-5. doi: 10.1016/j.cognition.2013.08.014. Epub 2013 Sep 14.
8
Vivid: How valence and arousal influence word processing under different task demands.
Cogn Affect Behav Neurosci. 2016 Jun;16(3):415-32. doi: 10.3758/s13415-016-0402-y.
9
Emotional valence and arousal affect reading in an interactive way: neuroimaging evidence for an approach-withdrawal framework.
Neuropsychologia. 2014 Apr;56(100):79-89. doi: 10.1016/j.neuropsychologia.2014.01.002. Epub 2014 Jan 15.
10
The Influence of Negative Orthographic Neighborhood in the Lexical Decision Task: Valence and Arousal Contributions.
Lang Speech. 2022 Sep;65(3):740-754. doi: 10.1177/00238309211061090. Epub 2021 Dec 11.

引用本文的文献

1
Divisive negative discourse biases social experience: a live experiment at a massive public event.
Humanit Soc Sci Commun. 2025;12(1):1273. doi: 10.1057/s41599-025-05652-8. Epub 2025 Aug 7.
4
Emotional valence, cloze probability, and entropy: Completion norms for 403 French sentences.
Behav Res Methods. 2025 Jan 31;57(2):81. doi: 10.3758/s13428-025-02604-7.
7
BRAND: Brand recognition and attitude norms database.
Behav Res Methods. 2024 Dec 16;57(1):17. doi: 10.3758/s13428-024-02525-x.
9
How does emotional content influence visual word recognition? A meta-analysis of valence effects.
Psychon Bull Rev. 2025 Apr;32(2):570-587. doi: 10.3758/s13423-024-02555-8. Epub 2024 Sep 19.
10
The role of individual differences in emotional word recognition: Insights from a large-scale lexical decision study.
Behav Res Methods. 2024 Dec;56(8):8501-8520. doi: 10.3758/s13428-024-02488-z. Epub 2024 Sep 4.

本文引用的文献

1
Prominence in triconstituent compounds: pitch contours and linguistic theory.
Lang Speech. 2013 Dec;56(Pt 4):529-54. doi: 10.1177/0023830913478914.
2
Random effects structure for confirmatory hypothesis testing: Keep it maximal.
J Mem Lang. 2013 Apr;68(3). doi: 10.1016/j.jml.2012.11.001.
3
How does emotional content affect lexical processing?
Cogn Emot. 2014;28(4):737-46. doi: 10.1080/02699931.2013.851068. Epub 2013 Nov 12.
4
The influence of emotion on lexical processing: insights from RT distributional analysis.
Psychon Bull Rev. 2014 Apr;21(2):526-33. doi: 10.3758/s13423-013-0525-x.
5
Emotion and memory: a recognition advantage for positive and negative words independent of arousal.
Cognition. 2013 Dec;129(3):530-5. doi: 10.1016/j.cognition.2013.08.014. Epub 2013 Sep 14.
6
Sensorimotor and linguistic information attenuate emotional word processing benefits: an eye-movement study.
Emotion. 2013 Dec;13(6):1107-21. doi: 10.1037/a0032417. Epub 2013 May 6.
7
Accentuate the positive: semantic access in english compounds.
Front Psychol. 2013 Apr 24;4:203. doi: 10.3389/fpsyg.2013.00203. eCollection 2013.
8
The unexplained nature of reading.
J Exp Psychol Learn Mem Cogn. 2013 Jul;39(4):1037-1053. doi: 10.1037/a0031829. Epub 2013 Apr 8.
9
Norms of valence, arousal, and dominance for 13,915 English lemmas.
Behav Res Methods. 2013 Dec;45(4):1191-207. doi: 10.3758/s13428-012-0314-x.
10
Reassessing word frequency as a determinant of word recognition for skilled and unskilled readers.
J Exp Psychol Hum Percept Perform. 2013 Jun;39(3):802-23. doi: 10.1037/a0030859. Epub 2013 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验