Suppr超能文献

TGFβ 通过 WNT 信号活性调节上皮-间充质相互作用,以控制软腭中的肌肉发育。

TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate.

机构信息

Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.

出版信息

Development. 2014 Feb;141(4):909-17. doi: 10.1242/dev.103093.

Abstract

Clefting of the soft palate occurs as a congenital defect in humans and adversely affects the physiological function of the palate. However, the molecular and cellular mechanism of clefting of the soft palate remains unclear because few animal models exhibit an isolated cleft in the soft palate. Using three-dimensional microCT images and histological reconstruction, we found that loss of TGFβ signaling in the palatal epithelium led to soft palate muscle defects in Tgfbr2(fl/fl);K14-Cre mice. Specifically, muscle mass was decreased in the soft palates of Tgfbr2 mutant mice, following defects in cell proliferation and differentiation. Gene expression of Dickkopf (Dkk1 and Dkk4), negative regulators of WNT-β-catenin signaling, is upregulated in the soft palate of Tgfbr2(fl/fl);K14-Cre mice, and WNT-β-catenin signaling is disrupted in the palatal mesenchyme. Importantly, blocking the function of DKK1 and DKK4 rescued the cell proliferation and differentiation defects in the soft palate of Tgfbr2(fl/fl);K14-Cre mice. Thus, our findings indicate that loss of TGFβ signaling in epithelial cells compromises activation of WNT signaling and proper muscle development in the soft palate through tissue-tissue interactions, resulting in a cleft soft palate. This information has important implications for prevention and non-surgical correction of cleft soft palate.

摘要

腭裂是人类的一种先天性缺陷,会对腭部的生理功能产生不利影响。然而,腭裂的分子和细胞机制尚不清楚,因为很少有动物模型表现出单纯的软腭裂。通过三维 microCT 图像和组织学重建,我们发现腭上皮细胞中 TGFβ 信号的缺失会导致 Tgfbr2(fl/fl);K14-Cre 小鼠的软腭裂肌肉缺陷。具体来说,Tgfbr2 突变小鼠的软腭裂中肌肉质量减少,这是由于细胞增殖和分化缺陷所致。Dickkopf(Dkk1 和 Dkk4)的基因表达,WNT-β-catenin 信号的负调控因子,在 Tgfbr2(fl/fl);K14-Cre 小鼠的软腭裂中上调,而 WNT-β-catenin 信号在腭中胚层中被破坏。重要的是,阻断 DKK1 和 DKK4 的功能可以挽救 Tgfbr2(fl/fl);K14-Cre 小鼠软腭裂中的细胞增殖和分化缺陷。因此,我们的研究结果表明,上皮细胞中 TGFβ 信号的缺失通过组织-组织相互作用损害了 WNT 信号的激活和软腭中的肌肉发育,导致软腭裂。这些信息对于预防和非手术矫正软腭裂具有重要意义。

相似文献

3
Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice.
Development. 2013 Mar;140(6):1220-30. doi: 10.1242/dev.089615. Epub 2013 Feb 13.
4
Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.
Hum Mol Genet. 2014 Jan 1;23(1):182-93. doi: 10.1093/hmg/ddt410. Epub 2013 Aug 23.
9
Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.
J Biol Chem. 2013 Oct 11;288(41):29760-70. doi: 10.1074/jbc.M113.493551. Epub 2013 Aug 15.
10
Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
Dev Biol. 2006 Sep 1;297(1):238-48. doi: 10.1016/j.ydbio.2006.05.014. Epub 2006 May 19.

引用本文的文献

1
Genetic analysis and functional assessment of a TGFBR2 variant in micrognathia and cleft palate.
PLoS One. 2025 Jun 9;20(6):e0324803. doi: 10.1371/journal.pone.0324803. eCollection 2025.
4
Genetic Analysis and Functional Assessment of a Variant in Micrognathia and Cleft Palate.
bioRxiv. 2024 Apr 11:2024.04.08.588524. doi: 10.1101/2024.04.08.588524.
5
Exploring the role of the WNT5A rs566926 polymorphism and its interactions in non-syndromic orofacial cleft: a multicenter study in Brazil.
J Appl Oral Sci. 2024 Feb 12;32:e20230353. doi: 10.1590/1678-7757-2023-0353. eCollection 2024.
8
Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis.
Development. 2023 Mar 1;150(5). doi: 10.1242/dev.201189. Epub 2023 Mar 9.
9
in Dental Pulp Cells Guides Neurite Outgrowth in Developing Teeth.
Front Cell Dev Biol. 2022 Feb 21;10:834815. doi: 10.3389/fcell.2022.834815. eCollection 2022.
10

本文引用的文献

1
Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.
J Biol Chem. 2013 Oct 11;288(41):29760-70. doi: 10.1074/jbc.M113.493551. Epub 2013 Aug 15.
2
Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice.
Development. 2013 Mar;140(6):1220-30. doi: 10.1242/dev.089615. Epub 2013 Feb 13.
3
Strategies to improve regeneration of the soft palate muscles after cleft palate repair.
Tissue Eng Part B Rev. 2012 Dec;18(6):468-77. doi: 10.1089/ten.TEB.2012.0049. Epub 2012 Jul 19.
5
Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice.
J Clin Invest. 2012 Mar;122(3):873-85. doi: 10.1172/JCI61498. Epub 2012 Feb 13.
6
Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development.
Development. 2012 Jan;139(2):231-43. doi: 10.1242/dev.067082.
7
Anatomy and physiology of the velopharyngeal mechanism.
Semin Speech Lang. 2011 May;32(2):83-92. doi: 10.1055/s-0031-1277712. Epub 2011 Sep 26.
8
The mechanism of TGF-β signaling during palate development.
Oral Dis. 2011 Nov;17(8):733-44. doi: 10.1111/j.1601-0825.2011.01806.x. Epub 2011 Mar 13.
9
Epithelial Wnt/β-catenin signaling regulates palatal shelf fusion through regulation of Tgfβ3 expression.
Dev Biol. 2011 Feb 15;350(2):511-9. doi: 10.1016/j.ydbio.2010.12.021. Epub 2010 Dec 23.
10
Functional anatomy of the soft palate applied to wind playing.
Med Probl Perform Art. 2010 Dec;25(4):183-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验