Suppr超能文献

微锥形硅结构影响神经生长因子诱导的PC12细胞形态。

Microconical silicon structures influence NGF-induced PC12 cell morphology.

作者信息

Simitzi C, Stratakis E, Fotakis C, Athanassakis I, Ranella A

机构信息

Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas (IESL-FORTH), Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece.

出版信息

J Tissue Eng Regen Med. 2015 Apr;9(4):424-34. doi: 10.1002/term.1853. Epub 2013 Dec 26.

Abstract

Micro-and nanofabrication techniques provide the opportunity to develop new types of cell culture platform, where the effect of various topographical cues on cellular functions such as proliferation and differentiation can be studied. In this study, PC12 cells were cultured on patterned silicon (Si) surfaces comprising arrays of microcones (MCs) exhibiting different geometrical characteristics and surface chemistries. It was illustrated that, in the absence of nerve growth factor (NGF), PC12 cells increased proliferation on all types of patterned surface, as compared to flat Si surfaces. However, in the presence of NGF, PC12 cells showed different responses, depending on the plating surface. Unlike low and intermediate rough MC surfaces, highly rough ones exhibiting large distances between MCs did not support PC12 cell differentiation, independently of the MCs' chemical coatings. These results suggest that the geometrical characteristics of MCs alone can influence specific cellular functions. Tailoring of the physical properties of arrays of Si MCs in order to identify which combinations of MC topologies and spatially defined chemistries are capable of driving specific cellular responses is envisaged.

摘要

微纳制造技术为开发新型细胞培养平台提供了契机,在此平台上可以研究各种拓扑线索对细胞功能(如增殖和分化)的影响。在本研究中,将PC12细胞培养在由具有不同几何特征和表面化学性质的微锥阵列组成的图案化硅(Si)表面上。结果表明,在没有神经生长因子(NGF)的情况下,与平坦的Si表面相比,PC12细胞在所有类型的图案化表面上的增殖均增加。然而,在存在NGF的情况下,PC12细胞表现出不同的反应,这取决于接种表面。与低粗糙度和中等粗糙度的微锥表面不同,微锥间距大的高粗糙度表面不支持PC12细胞分化,与微锥的化学涂层无关。这些结果表明,仅微锥的几何特征就可以影响特定的细胞功能。设想通过调整Si微锥阵列的物理性质,以确定哪些微锥拓扑结构和空间定义的化学性质组合能够驱动特定的细胞反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验