Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
RWTH University Aachen, 52062 Aachen, Germany.
ACS Appl Mater Interfaces. 2021 May 26;13(20):23438-23451. doi: 10.1021/acsami.1c03537. Epub 2021 May 13.
Many nano- and microstructured devices capable of promoting neuronal growth and network formation have been previously investigated. In certain cases, topographical cues have been successfully complemented with external bias, by employing electrically conducting scaffolds. However, the use of optical stimulation with topographical cues was rarely addressed in this context, and the development of light-addressable platforms for modulating and guiding cellular growth and proliferation remains almost completely unexplored. Here, we develop high aspect ratio micropillars based on a prototype semiconducting polymer, regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT), as an optically active, three-dimensional platform for embryonic cortical neurons. P3HT micropillars provide a mechanically compliant environment and allow a close contact with neuronal cells. The combined action of nano/microtopography and visible light excitation leads to effective optical modulation of neuronal growth and orientation. Embryonic neurons cultured on polymer pillars show a clear polarization effect and, upon exposure to optical excitation, a significant increase in both neurite and axon length. The biocompatible, microstructured, and light-sensitive platform developed here opens up the opportunity to optically regulate neuronal growth in a wireless, repeatable, and spatio-temporally controlled manner without genetic modification. This approach may be extended to other cell models, thus uncovering interesting applications of photonic devices in regenerative medicine.
先前已有许多能够促进神经元生长和网络形成的纳米和微结构器件得到了研究。在某些情况下,通过使用导电支架,已经成功地将形貌线索与外部偏置相结合。然而,在这种情况下,很少涉及用光刺激形貌线索,用于调节和引导细胞生长和增殖的光寻址平台的开发几乎完全没有得到探索。在这里,我们基于原型半导体聚合物,即规则聚(3-己基噻吩-2,5-二基)(P3HT),开发了高纵横比微柱作为一种光活性的、三维平台用于胚胎皮质神经元。P3HT 微柱提供了机械顺应性的环境,并允许与神经元细胞紧密接触。纳米/微形貌和可见光激发的联合作用导致神经元生长和取向的有效光学调制。在聚合物支柱上培养的胚胎神经元表现出明显的极化效应,并且在暴露于光学激发时,神经突和轴突的长度都显著增加。这里开发的生物相容、微结构化和光敏平台为在无线、可重复和时空可控的方式下对神经元生长进行光学调节提供了机会,而无需基因修饰。这种方法可以扩展到其他细胞模型,从而揭示出光子器件在再生医学中的有趣应用。