Suppr超能文献

实验室出芽酵母群体中突变谱系的命运及有益突变的适合度效应分布。

The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations.

作者信息

Frenkel Evgeni M, Good Benjamin H, Desai Michael M

机构信息

Program in Biophysics, Harvard University, Cambridge, Massachusetts 02138.

出版信息

Genetics. 2014 Apr;196(4):1217-26. doi: 10.1534/genetics.113.160069. Epub 2014 Feb 10.

Abstract

The outcomes of evolution are determined by which mutations occur and fix. In rapidly adapting microbial populations, this process is particularly hard to predict because lineages with different beneficial mutations often spread simultaneously and interfere with one another's fixation. Hence to predict the fate of any individual variant, we must know the rate at which new mutations create competing lineages of higher fitness. Here, we directly measured the effect of this interference on the fates of specific adaptive variants in laboratory Saccharomyces cerevisiae populations and used these measurements to infer the distribution of fitness effects of new beneficial mutations. To do so, we seeded marked lineages with different fitness advantages into replicate populations and tracked their subsequent frequencies for hundreds of generations. Our results illustrate the transition between strongly advantageous lineages that decisively sweep to fixation and more moderately advantageous lineages that are often outcompeted by new mutations arising during the course of the experiment. We developed an approximate likelihood framework to compare our data to simulations and found that the effects of these competing beneficial mutations were best approximated by an exponential distribution, rather than one with a single effect size. We then used this inferred distribution of fitness effects to predict the rate of adaptation in a set of independent control populations. Finally, we discuss how our experimental design can serve as a screen for rare, large-effect beneficial mutations.

摘要

进化的结果取决于发生并固定下来的突变。在快速适应的微生物群体中,这一过程尤其难以预测,因为具有不同有益突变的谱系往往会同时传播并相互干扰对方的固定。因此,为了预测任何单个变体的命运,我们必须了解新突变产生更高适应性竞争谱系的速率。在这里,我们直接测量了这种干扰对实验室酿酒酵母群体中特定适应性变体命运的影响,并利用这些测量结果推断新的有益突变的适应性效应分布。为此,我们将具有不同适应性优势的标记谱系接种到重复群体中,并跟踪它们在数百代中的后续频率。我们的结果说明了具有决定性优势的谱系向固定状态的强烈转变,以及在实验过程中经常被新突变淘汰的优势较弱的谱系。我们开发了一个近似似然框架,将我们的数据与模拟结果进行比较,发现这些竞争性有益突变的效应最好用指数分布来近似,而不是用单一效应大小的分布。然后,我们使用这个推断出的适应性效应分布来预测一组独立对照群体中的适应速率。最后,我们讨论了我们的实验设计如何能够作为一种筛选罕见的、具有大效应的有益突变的方法。

相似文献

9
The properties of adaptive walks in evolving populations of fungus.在真菌演化种群中的适应性游走的特性。
PLoS Biol. 2009 Nov;7(11):e1000250. doi: 10.1371/journal.pbio.1000250. Epub 2009 Nov 24.

引用本文的文献

1
Evolution of evolvability in rapidly adapting populations.快速适应种群中可进化性的演变。
Nat Ecol Evol. 2024 Nov;8(11):2085-2096. doi: 10.1038/s41559-024-02527-0. Epub 2024 Sep 11.
3
A dynamical limit to evolutionary adaptation.进化适应的动态限制。
Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2312845121. doi: 10.1073/pnas.2312845121. Epub 2024 Jan 19.
5
A dynamical limit to evolutionary adaptation.进化适应的动态极限。
bioRxiv. 2023 Aug 2:2023.07.31.551320. doi: 10.1101/2023.07.31.551320.
10
Mathematical modeling of movement on fitness landscapes.适应度景观上运动的数学建模。
BMC Syst Biol. 2019 Feb 28;13(1):25. doi: 10.1186/s12918-019-0704-0.

本文引用的文献

2
Long-term dynamics of adaptation in asexual populations.无性种群的适应长期动态。
Science. 2013 Dec 13;342(6164):1364-7. doi: 10.1126/science.1243357. Epub 2013 Nov 14.
7
Adaptation to a new environment allows cooperators to purge cheaters stochastically.适应新环境使合作者能够随机清除骗子。
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19079-86. doi: 10.1073/pnas.1210190109. Epub 2012 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验