Suppr超能文献

自然基因型-表型关系中复杂遗传率的分子起源。

Molecular Origins of Complex Heritability in Natural Genotype-to-Phenotype Relationships.

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Cell Syst. 2019 May 22;8(5):363-379.e3. doi: 10.1016/j.cels.2019.04.002. Epub 2019 May 1.

Abstract

The statistical complexity of heredity has long been evident, but its molecular origins remain elusive. To investigate, we charted 90 comprehensive genotype-to-phenotype maps in a large population of wild diploid yeast. In contrast to long-standing assumptions, all types of genetic variation contributed similarly to phenotype. Causal synonymous and regulatory variants exhibited distinct molecular signatures, as did nonlinearities in heterozygote fitness that likely contribute to hybrid vigor. Highly pleiotropic variants altered disordered sequences within signaling hubs, and their effects correlated across environments-even when antagonistic-suggesting that large fitness gains bring concomitant costs. Natural genetic networks defined by the causal loci differed from those determined by precise gene deletions or protein-protein interactions. Finally, we found that traits that would appear omnigenic in less powered studies do in fact have finite genetic determinants. Integrating these molecular principles will be crucial as genome reading and writing become routine in research, industry, and medicine.

摘要

遗传的统计复杂性早已显而易见,但它的分子起源仍然难以捉摸。为了研究这一现象,我们在一个大型野生二倍体酵母群体中绘制了 90 张综合基因型到表型图谱。与长期以来的假设相反,所有类型的遗传变异都同样对表型有贡献。因果同义变体和调控变体表现出不同的分子特征,杂合子适应性的非线性也同样如此,这可能有助于杂种优势。高度多效性变体改变了信号枢纽内的无序序列,并且它们的效应在不同环境中具有相关性——即使是相互拮抗的——表明大的适应度增益伴随着相应的代价。由因果位点定义的自然遗传网络与由精确基因缺失或蛋白质-蛋白质相互作用决定的网络不同。最后,我们发现,在功能较弱的研究中看似全基因组遗传的性状实际上确实有有限的遗传决定因素。随着基因组阅读和编写在研究、工业和医学中变得常规化,整合这些分子原理将是至关重要的。

相似文献

引用本文的文献

1
A mathematical framework for the quantitative analysis of genetic buffering.用于基因缓冲定量分析的数学框架。
PLoS Genet. 2025 Jun 10;21(6):e1011730. doi: 10.1371/journal.pgen.1011730. eCollection 2025 Jun.

本文引用的文献

10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验