Suppr超能文献

当前物种和祖先物种无间隙代谢网络的比较基因组规模重建。

Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species.

作者信息

Pitkänen Esa, Jouhten Paula, Hou Jian, Syed Muhammad Fahad, Blomberg Peter, Kludas Jana, Oja Merja, Holm Liisa, Penttilä Merja, Rousu Juho, Arvas Mikko

机构信息

Department of Computer Science, University of Helsinki, Helsinki, Finland ; Department of Medical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland.

VTT Technical Research Centre of Finland, Espoo, Finland.

出版信息

PLoS Comput Biol. 2014 Feb 6;10(2):e1003465. doi: 10.1371/journal.pcbi.1003465. eCollection 2014 Feb.

Abstract

We introduce a novel computational approach, CoReCo, for comparative metabolic reconstruction and provide genome-scale metabolic network models for 49 important fungal species. Leveraging on the exponential growth in sequenced genome availability, our method reconstructs genome-scale gapless metabolic networks simultaneously for a large number of species by integrating sequence data in a probabilistic framework. High reconstruction accuracy is demonstrated by comparisons to the well-curated Saccharomyces cerevisiae consensus model and large-scale knock-out experiments. Our comparative approach is particularly useful in scenarios where the quality of available sequence data is lacking, and when reconstructing evolutionary distant species. Moreover, the reconstructed networks are fully carbon mapped, allowing their use in 13C flux analysis. We demonstrate the functionality and usability of the reconstructed fungal models with computational steady-state biomass production experiment, as these fungi include some of the most important production organisms in industrial biotechnology. In contrast to many existing reconstruction techniques, only minimal manual effort is required before the reconstructed models are usable in flux balance experiments. CoReCo is available at http://esaskar.github.io/CoReCo/.

摘要

我们介绍了一种用于比较代谢重建的新型计算方法CoReCo,并提供了49种重要真菌物种的基因组规模代谢网络模型。利用已测序基因组可用性的指数增长,我们的方法通过在概率框架中整合序列数据,同时为大量物种重建基因组规模的无间隙代谢网络。与精心策划的酿酒酵母共识模型和大规模敲除实验的比较证明了高重建准确性。我们的比较方法在可用序列数据质量不足的情况下以及重建进化距离较远的物种时特别有用。此外,重建的网络进行了全碳映射,可用于13C通量分析。我们通过计算稳态生物量生产实验证明了重建的真菌模型的功能和可用性,因为这些真菌包括工业生物技术中一些最重要的生产生物体。与许多现有重建技术相比,在重建模型可用于通量平衡实验之前只需要最少的人工干预。CoReCo可在http://esaskar.github.io/CoReCo/获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/347f/3916221/9a7dac5c07e8/pcbi.1003465.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验