Aggarwal Manisha, Gobius Ilan, Richards Linda J, Mori Susumu
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Queensland Brain Institute.
Cereb Cortex. 2015 Jul;25(7):1970-80. doi: 10.1093/cercor/bhu006. Epub 2014 Feb 10.
Cortical development in the mouse embryo involves complex changes in the microstructure of the telencephalic wall, which are challenging to examine using three-dimensional (3D) imaging techniques. In this study, high-resolution 3D diffusion magnetic resonance (dMR) microscopy of the embryonic mouse cortex is presented. Using diffusion-weighted gradient- and spin-echo based acquisition, dMR microimaging data were acquired from fixed mouse embryos at 7 developmental stages from embryonic day (E)12.5 to E18.5. The dMR imaging (dMRI) contrasts revealed microscopic structural detail in the mouse telencephalic wall, allowing delineation of transient zones in the developing cortex based on their unique diffusion signatures. With the high-resolution 3D data of the mouse embryo, we were able to visualize the complex microstructure of embryonic cerebral tissue and to resolve its regional and temporal evolution during cortical formation. Furthermore, averaged dMRI contrasts generated via deformable registration revealed distinct spatial and temporal gradients of anisotropy variation across the developing embryonic cortical plate and the ventricular zone. The findings of this study demonstrate the potential of 3D dMRI to resolve the complex microstructure of the embryonic mouse cortex, and will be important for investigations of corticogenesis and its disruption in embryonic mouse models.
小鼠胚胎的皮质发育涉及端脑壁微观结构的复杂变化,使用三维(3D)成像技术对其进行检测具有挑战性。在本研究中,我们展示了对胚胎小鼠皮质进行高分辨率3D扩散磁共振(dMR)显微镜检查的结果。利用基于扩散加权梯度和自旋回波的采集方法,从胚胎期(E)12.5至E18.5的7个发育阶段的固定小鼠胚胎中获取了dMR显微成像数据。dMR成像(dMRI)对比揭示了小鼠端脑壁的微观结构细节,从而能够根据发育中皮质的独特扩散特征勾勒出过渡区。借助小鼠胚胎的高分辨率3D数据,我们能够可视化胚胎脑组织的复杂微观结构,并解析其在皮质形成过程中的区域和时间演变。此外,通过可变形配准生成的平均dMRI对比显示,在发育中的胚胎皮质板和脑室区,各向异性变化存在明显的空间和时间梯度。本研究结果证明了3D dMRI在解析胚胎小鼠皮质复杂微观结构方面的潜力,这对于研究胚胎小鼠模型中的皮质发生及其破坏情况具有重要意义。