Suppr超能文献

磁纳米粒子微环境温度:从弛豫时间估计。

Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times.

机构信息

Department of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.

出版信息

Phys Med Biol. 2014 Mar 7;59(5):1109-19. doi: 10.1088/0031-9155/59/5/1109. Epub 2014 Feb 20.

Abstract

Accurate temperature measurements are essential to safe and effective thermal therapies for cancer and other diseases. However, conventional thermometry is challenging so using the heating agents themselves as probes allows for ideal local measurements. Here, we present a new noninvasive method for measuring the temperature of the microenvironment surrounding magnetic nanoparticles from the Brownian relaxation time of nanoparticles. Experimentally, the relaxation time can be determined from the nanoparticle magnetization induced by an alternating magnetic field at various applied frequencies. A previously described method for nanoparticle temperature estimation used a low frequency Langevin function description of magnetic dipoles and varied the excitation field amplitude to estimate the energy state distribution and the corresponding temperature. We show that the new method is more accurate than the previous method at higher applied field frequencies that push the system farther from equilibrium.

摘要

准确的温度测量对于癌症和其他疾病的安全有效的热疗至关重要。然而,传统的测温方法具有挑战性,因此使用加热剂本身作为探针可以实现理想的局部测量。在这里,我们提出了一种新的非侵入性方法,通过测量纳米粒子的布朗弛豫时间来测量周围微环境的温度。在实验中,弛豫时间可以通过在不同施加频率的交变磁场下纳米粒子的磁化来确定。之前描述的纳米粒子温度估计方法使用低频朗之万函数来描述磁偶极子,并改变激励场幅度来估计能量状态分布和相应的温度。我们表明,在将系统推向更远的非平衡状态的更高施加场频率下,新方法比以前的方法更准确。

相似文献

1
Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times.
Phys Med Biol. 2014 Mar 7;59(5):1109-19. doi: 10.1088/0031-9155/59/5/1109. Epub 2014 Feb 20.
2
Approaches for modeling magnetic nanoparticle dynamics.
Crit Rev Biomed Eng. 2014;42(1):85-93. doi: 10.1615/critrevbiomedeng.2014010845.
4
Nanoparticle impacts reveal magnetic field induced agglomeration and reduced dissolution rates.
Phys Chem Chem Phys. 2014 Jul 21;16(27):13909-13. doi: 10.1039/c4cp01618a. Epub 2014 Jun 5.
5
Mechanism of magnetic relaxation switching sensing.
ACS Nano. 2012 Aug 28;6(8):6821-8. doi: 10.1021/nn301615b. Epub 2012 Jul 10.
6
Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics.
PLoS One. 2016 Mar 9;11(3):e0150856. doi: 10.1371/journal.pone.0150856. eCollection 2016.
7
Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
Biomed Tech (Berl). 2015 Oct;60(5):491-504. doi: 10.1515/bmt-2015-0046.
8
Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
Mater Sci Eng C Mater Biol Appl. 2014 Sep;42:52-63. doi: 10.1016/j.msec.2014.04.064. Epub 2014 May 13.
9
Concurrent quantification of magnetic nanoparticles temperature and relaxation time.
Med Phys. 2019 Sep;46(9):4070-4076. doi: 10.1002/mp.13655. Epub 2019 Jul 12.
10
The local heating effect by magnetic nanoparticles aggregate on support lipid bilayers.
J Biomed Nanotechnol. 2013 Jul;9(7):1210-5. doi: 10.1166/jbn.2013.1655.

引用本文的文献

1
Multifunctional effects in magnetic nanoparticles for precision medicine: combining magnetic particle thermometry and hyperthermia.
Nanoscale Adv. 2023 Jul 5;5(16):4080-4094. doi: 10.1039/d3na00197k. eCollection 2023 Aug 8.
2
Magnetic Particle Spectroscopy for Point-of-Care: A Review on Recent Advances.
Sensors (Basel). 2023 Apr 30;23(9):4411. doi: 10.3390/s23094411.
3
Iron Oxide Nanoparticle-Based Ferro-Nanofluids for Advanced Technological Applications.
Molecules. 2022 Nov 16;27(22):7931. doi: 10.3390/molecules27227931.
4
Magnetic nanoparticles and magnetic particle spectroscopy-based bioassays: a 15 year recap.
Nano Futures. 2022 Jun;6(2). doi: 10.1088/2399-1984/ac5cd1. Epub 2022 Apr 7.
6
Clinical magnetic hyperthermia requires integrated magnetic particle imaging.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 May;14(3):e1779. doi: 10.1002/wnan.1779. Epub 2022 Mar 3.
7
Simulation Study on Performance Optimization of Magnetic Nanoparticles DC Thermometry Model.
Sensors (Basel). 2021 Mar 31;21(7):2404. doi: 10.3390/s21072404.
8
Investigation of Commercial Iron Oxide Nanoparticles: Structural and Magnetic Property Characterization.
ACS Omega. 2021 Feb 26;6(9):6274-6283. doi: 10.1021/acsomega.0c05845. eCollection 2021 Mar 9.
9
Concurrent quantification of magnetic nanoparticles temperature and relaxation time.
Med Phys. 2019 Sep;46(9):4070-4076. doi: 10.1002/mp.13655. Epub 2019 Jul 12.

本文引用的文献

2
Simulations of magnetic nanoparticle Brownian motion.
J Appl Phys. 2012 Dec 15;112(12):124311. doi: 10.1063/1.4770322. Epub 2012 Dec 20.
3
Measurement of magnetic nanoparticle relaxation time.
Med Phys. 2012 May;39(5):2765-70. doi: 10.1118/1.3701775.
4
Tracer design for magnetic particle imaging (invited).
J Appl Phys. 2012 Apr 1;111(7):7B318-7B3185. doi: 10.1063/1.3676053. Epub 2012 Mar 2.
5
The use of magnetic nanoparticles in thermal therapy monitoring and screening: Localization and imaging (invited).
J Appl Phys. 2012 Apr 1;111(7):7B317-7B3173. doi: 10.1063/1.3675994. Epub 2012 Mar 2.
6
Nanoparticle preconditioning for enhanced thermal therapies in cancer.
Nanomedicine (Lond). 2011 Apr;6(3):545-63. doi: 10.2217/nnm.10.153.
7
Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging.
Med Phys. 2011 Mar;38(3):1619-26. doi: 10.1118/1.3554646.
8
Antibody-targeted nanoparticles for cancer therapy.
Immunotherapy. 2011 Mar;3(3):381-94. doi: 10.2217/imt.11.5.
9
Magnetic nanoparticle hyperthermia for prostate cancer.
Int J Hyperthermia. 2010;26(8):790-5. doi: 10.3109/02656731003745740. Epub 2010 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验