Suppr超能文献

基于成纤维细胞生长因子的信号转导通过使用高密度三维细胞打印研究的合成肝素硫酸酯嵌段共聚物。

Fibroblast growth factor-based signaling through synthetic heparan sulfate blocks copolymers studied using high cell density three-dimensional cell printing.

机构信息

From the Department of Chemical and Biological Engineering.

出版信息

J Biol Chem. 2014 Apr 4;289(14):9754-65. doi: 10.1074/jbc.M113.546937. Epub 2014 Feb 22.

Abstract

Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ~40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model.

摘要

四种结构明确的肝素硫酸盐(HS)嵌段共聚物,包含紧邻 N 结构域(低硫酸根含量)的 S 结构域(高硫酸根含量),通过化学酶法合成并进行了表征。这些 HS 嵌段共聚物中的结构域长度约为 40 个糖单位。开发了微量滴定 96 孔板和基于三维细胞的微阵列分析,利用小鼠永生化骨髓(BaF3)细胞,来评估这些 HS 嵌段共聚物的活性。每个重组 BaF3 细胞系仅表达一种类型的成纤维细胞生长因子受体(FGFR),但既不产生 HS 也不产生成纤维细胞生长因子(FGFs)。在不同 FGFs 的存在下,四种 HS 嵌段共聚物检测到 BaF3 细胞增殖存在明显差异。这些数据用于检验两种提出的信号转导模型,即对称的 FGF2-HS2-FGFR2 三元复合物模型和不对称的 FGF2-HS1-FGFR2 三元复合物模型。在对称的 FGF2-HS2-FGFR2 模型中,两条酸性 HS 链结合在位于 FGF2-FGFR2 蛋白复合物顶面的碱性峡谷中。在该模型中,提议两条 HS 蛋白聚糖链的非还原末端的 S 结构域与 FGF2-FGFR2 蛋白复合物相互作用。相比之下,在不对称的 FGF2-HS1-FGFR2 模型中,单个 HS 链通过单个 S 结构域与 FGF2-FGFR2 蛋白复合物相互作用,该 S 结构域可以位于 HS 链内的任何位置。我们对一系列合成制备的 HS 嵌段共聚物进行比较的数据支持了对对称的 FGF2-HS2-FGFR2 三元复合物模型的偏好。

相似文献

2
Heparan Sulfate Domains Required for Fibroblast Growth Factor 1 and 2 Signaling through Fibroblast Growth Factor Receptor 1c.
J Biol Chem. 2017 Feb 10;292(6):2495-2509. doi: 10.1074/jbc.M116.761585. Epub 2016 Dec 28.
5
Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosmin-1.
J Biol Chem. 2009 Oct 23;284(43):29905-20. doi: 10.1074/jbc.M109.049155. Epub 2009 Aug 20.
6
Role of heparan sulfate as a tissue-specific regulator of FGF-4 and FGF receptor recognition.
J Cell Biol. 2001 Nov 26;155(5):845-58. doi: 10.1083/jcb.200106075.
7
Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly.
Biochemistry. 2004 Apr 27;43(16):4724-30. doi: 10.1021/bi0352320.
8
Heparan sulfate domain organization and sulfation modulate FGF-induced cell signaling.
J Biol Chem. 2010 Aug 27;285(35):26842-26851. doi: 10.1074/jbc.M109.093542. Epub 2010 Jun 24.
10
6-O-sulfation of heparan sulfate differentially regulates various fibroblast growth factor-dependent signalings in culture.
J Biol Chem. 2008 Apr 18;283(16):10366-76. doi: 10.1074/jbc.M705948200. Epub 2008 Feb 14.

引用本文的文献

2
Regional and disease-specific glycosaminoglycan composition and function in decellularized human lung extracellular matrix.
Acta Biomater. 2023 Sep 15;168:388-399. doi: 10.1016/j.actbio.2023.06.043. Epub 2023 Jul 9.
3
Glycosaminoglycans: What Remains To Be Deciphered?
JACS Au. 2023 Mar 2;3(3):628-656. doi: 10.1021/jacsau.2c00569. eCollection 2023 Mar 27.
4
Extracellular matrix dynamics: tracking in biological systems and their implications.
J Biol Eng. 2022 May 30;16(1):13. doi: 10.1186/s13036-022-00292-x.
5
Potential Use of Anti-Inflammatory Synthetic Heparan Sulfate to Attenuate Liver Damage.
Biomedicines. 2020 Nov 16;8(11):503. doi: 10.3390/biomedicines8110503.
6
Advances in the preparation and synthesis of heparin and related products.
Drug Discov Today. 2020 Dec;25(12):2095-2109. doi: 10.1016/j.drudis.2020.09.011. Epub 2020 Sep 16.
7
Functional role of glycosaminoglycans in decellularized lung extracellular matrix.
Acta Biomater. 2020 Jan 15;102:231-246. doi: 10.1016/j.actbio.2019.11.029. Epub 2019 Nov 18.
9
Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces.
Front Chem. 2019 Jan 8;6:645. doi: 10.3389/fchem.2018.00645. eCollection 2018.
10
Engineered heparins as new anticoagulant drugs.
Bioeng Transl Med. 2017 Mar;2(1):17-30. doi: 10.1002/btm2.10042. Epub 2016 Nov 21.

本文引用的文献

1
FGF-FGFR signaling mediated through glycosaminoglycans in microtiter plate and cell-based microarray platforms.
Biochemistry. 2013 Dec 17;52(50):9009-19. doi: 10.1021/bi401284r. Epub 2013 Dec 6.
6
Influence of a three-dimensional, microarray environment on human cell culture in drug screening systems.
Biomaterials. 2012 Dec;33(35):9087-96. doi: 10.1016/j.biomaterials.2012.08.065. Epub 2012 Sep 19.
7
Understanding the substrate specificity of the heparan sulfate sulfotransferases by an integrated biosynthetic and crystallographic approach.
Curr Opin Struct Biol. 2012 Oct;22(5):550-7. doi: 10.1016/j.sbi.2012.07.004. Epub 2012 Jul 26.
8
Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities.
J Biol Chem. 2012 Aug 17;287(34):29054-61. doi: 10.1074/jbc.M112.358523. Epub 2012 Jul 6.
9
Array-based functional screening of heparin glycans.
Chem Biol. 2012 May 25;19(5):553-8. doi: 10.1016/j.chembiol.2012.03.011.
10
Drosophila heparan sulfate, a novel design.
J Biol Chem. 2012 Jun 22;287(26):21950-6. doi: 10.1074/jbc.M112.350389. Epub 2012 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验