Zhou Xue, Wu Dan, Zhang Yingjie, Feng Tianhang, Zhang Wenming, Zhang Zhonghai
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
Nat Commun. 2025 Jul 1;16(1):5690. doi: 10.1038/s41467-025-60937-5.
The integration of microbial nitrogen (N) fixation with photochemical processes using inorganic light-absorbing nanomaterials is a burgeoning field in sustainable energy production. Here, we explore the synergistic combination of inorganic semiconductor nanowires (NWs) with whole-cell microorganisms to create an inorganic-bacterial biohybrid system. Specifically, we employ CuO@TiO NWs with a core/shell structure to harness sunlight and generate photoexcited electrons. Azotobacter vinelandii, serving as a biocatalyst, adsorbs onto these NWs and facilitates the reception of photoexcited electrons, thereby enhancing the efficiency of the photoelectrochemical N fixation reaction (PEC-NRR). The biohybrid system achieves an impressive ammonia (NH) yield of (1.49 ± 0.05) × 10 mol s cm (5.36 ± 0.18 μmol h cm). The enhancement in NH synthesis within the CuO@TiO NWs/A. vinelandii biohybrid is attributed to the increased concentrations of nicotinamide adenine dinucleotide-hydrogen (NADH) and adenosine 5'-triphosphate (ATP), as well as the overexpression of N-fixing genes like nifH and nifD within the nitrogenase enzyme complex. This study underscores the potential of inorganic-bacterial biohybrid systems in solar-chemical conversion, paving the way for more diverse and functional approaches to harnessing solar energy for sustainable chemical production.
将微生物固氮与使用无机光吸收纳米材料的光化学过程相结合,是可持续能源生产中一个新兴的领域。在此,我们探索无机半导体纳米线(NWs)与全细胞微生物的协同组合,以创建一个无机-细菌生物杂交系统。具体而言,我们采用具有核/壳结构的CuO@TiO NWs来利用阳光并产生光激发电子。作为生物催化剂的棕色固氮菌吸附在这些纳米线上,并促进光激发电子的接收,从而提高光电化学固氮反应(PEC-NRR)的效率。该生物杂交系统实现了令人印象深刻的氨(NH₃)产量,为(1.49 ± 0.05) × 10⁻¹¹ mol s⁻¹ cm⁻²(5.36 ± 0.18 μmol h⁻¹ cm⁻²)。在CuO@TiO NWs/棕色固氮菌生物杂交体系中NH₃合成的增强归因于烟酰胺腺嘌呤二核苷酸-氢(NADH)和腺苷5'-三磷酸(ATP)浓度的增加,以及固氮酶复合物中nifH和nifD等固氮基因的过表达。这项研究强调了无机-细菌生物杂交系统在太阳能-化学转化中的潜力,为利用太阳能进行可持续化学生产的更多样化和功能性方法铺平了道路。