Zheng Chunfang, Chen Eric, Albert Victor A, Lyons Eric, Sankoff David
BMC Genomics. 2013;14 Suppl 7(Suppl 7):S3. doi: 10.1186/1471-2164-14-S7-S3. Epub 2013 Nov 5.
A hexaploidization event over 125 Mya underlies the evolutionary lineage of the majority of flowering plants, including very many species of agricultural importance. Half of these belong to the rosid subgrouping, containing severals whose genome sequences have been published. Although most duplicate and triplicate genes have been lost in all descendants, clear traces of the original chromosome triples can be discerned, their internal contiguity highly conserved in some genomes and very fragmented in others. To understand the particular evolutionary patterns of plant genomes, there is a need to systematically survey the fate of the subgenomes of polyploids, including the retention of a small proportion of the duplicate and triplicate genes and the reconstruction of putative ancestral intermediates between the original hexaploid and modern species, in this case the ancestor of the eurosid clade.
We quantitatively trace the fate of gene triples originating in the hexaploidy across seven core eudicot flowering plants, and fit this to a two-stage model, pre- and post-radiation. We also measure the simultaneous dynamics of duplicate orthologous gene loss in three rosids, as influenced by biological functional class. We propose a new protocol for reconstructing ancestral gene order using only gene adjacency data from pairwise genomic analyses, based on repeating MAXIMUM WEIGHT MATCHING at two levels of resolution, an approach designed to transcend limitations on reconstructed contig size, while still avoiding the ambiguities of a multiplicity of solutions. Applied to three high-quality rosid genomes without subsequent polyploidy events, our automated procedure reconstructs the ancestor of the eurosid clade.
The gene loss analysis and the ancestor reconstruction present complementary assessments of post-hexaploidization evolution, the first at the level of individual gene families within and across sister genomes and the second at the chromosome level. Despite the loss of more than 95% of gene duplicates and triplicates, and despite major structural rearrangement, our reconstructed eurosid ancestor clearly identifies the three regions corresponding to each of the seven original chromosomes of the earlier pre-hexaploid ancestor. Functional analysis confirmed trends reported for more recent plant polyploidy events: genes involved with regulation and responses were retained in multiple copies, while genes involved with metabolic processes were lost.
超过1.25亿年前的一次六倍体化事件是大多数开花植物进化谱系的基础,其中包括许多具有农业重要性的物种。这些物种中有一半属于蔷薇分支,其中一些物种的基因组序列已经公布。尽管在所有后代中,大多数重复和三倍化的基因已经丢失,但仍能清晰地辨别出原始染色体三倍体的痕迹,它们的内部连续性在一些基因组中高度保守,而在另一些基因组中则非常碎片化。为了理解植物基因组的特定进化模式,有必要系统地研究多倍体亚基因组的命运,包括一小部分重复和三倍化基因的保留,以及在原始六倍体和现代物种之间重建假定的祖先中间体,在这种情况下是真蔷薇分支的祖先。
我们定量追踪了起源于六倍体化的基因三倍体在七种核心真双子叶开花植物中的命运,并将其与辐射前和辐射后两个阶段的模型相拟合。我们还测量了三种蔷薇分支植物中重复直系同源基因丢失的同步动态,这受到生物学功能类别的影响。我们提出了一种仅使用来自成对基因组分析的基因邻接数据来重建祖先基因顺序的新方案,该方案基于在两个分辨率水平上重复进行最大权重匹配,这种方法旨在超越对重建重叠群大小的限制,同时仍避免多种解决方案的模糊性。应用于三个没有后续多倍体事件的高质量蔷薇分支基因组,我们的自动化程序重建了真蔷薇分支的祖先。
基因丢失分析和祖先重建对六倍体化后的进化进行了互补评估,前者是在姐妹基因组内部和之间的单个基因家族水平上进行,后者是在染色体水平上进行。尽管超过95%的重复和三倍化基因已经丢失,并且尽管发生了重大的结构重排,但我们重建的真蔷薇分支祖先清楚地识别出了与早期六倍体前祖先的七条原始染色体相对应的三个区域。功能分析证实了最近报道的植物多倍体事件的趋势:参与调控和反应的基因以多个拷贝保留,而参与代谢过程的基因则丢失。