Suppr超能文献

突变和选择对大肠杆菌噬菌体密码子适应性的影响。

The effect of mutation and selection on codon adaptation in Escherichia coli bacteriophage.

作者信息

Chithambaram Shivapriya, Prabhakaran Ramanandan, Xia Xuhua

机构信息

Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.

出版信息

Genetics. 2014 May;197(1):301-15. doi: 10.1534/genetics.114.162842. Epub 2014 Feb 28.

Abstract

Studying phage codon adaptation is important not only for understanding the process of translation elongation, but also for reengineering phages for medical and industrial purposes. To evaluate the effect of mutation and selection on phage codon usage, we developed an index to measure selection imposed by host translation machinery, based on the difference in codon usage between all host genes and highly expressed host genes. We developed linear and nonlinear models to estimate the C→T mutation bias in different phage lineages and to evaluate the relative effect of mutation and host selection on phage codon usage. C→T-biased mutations occur more frequently in single-stranded DNA (ssDNA) phages than in double-stranded DNA (dsDNA) phages and affect not only synonymous codon usage, but also nonsynonymous substitutions at second codon positions, especially in ssDNA phages. The host translation machinery affects codon adaptation in both dsDNA and ssDNA phages, with a stronger effect on dsDNA phages than on ssDNA phages. Strand asymmetry with the associated local variation in mutation bias can significantly interfere with codon adaptation in both dsDNA and ssDNA phages.

摘要

研究噬菌体密码子适应性不仅对于理解翻译延伸过程很重要,而且对于出于医学和工业目的对噬菌体进行重新设计也很重要。为了评估突变和选择对噬菌体密码子使用的影响,我们基于所有宿主基因和高表达宿主基因之间密码子使用的差异,开发了一个指数来衡量宿主翻译机制施加的选择。我们开发了线性和非线性模型,以估计不同噬菌体谱系中的C→T突变偏向,并评估突变和宿主选择对噬菌体密码子使用的相对影响。C→T偏向性突变在单链DNA(ssDNA)噬菌体中比在双链DNA(dsDNA)噬菌体中更频繁地发生,并且不仅影响同义密码子的使用,还影响第二个密码子位置的非同义替换,特别是在ssDNA噬菌体中。宿主翻译机制影响dsDNA和ssDNA噬菌体中的密码子适应性,对dsDNA噬菌体的影响比对ssDNA噬菌体的影响更强。具有相关突变偏向局部变化的链不对称性可显著干扰dsDNA和ssDNA噬菌体中的密码子适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd60/4012488/820c922557fc/301fig1.jpg

相似文献

1
The effect of mutation and selection on codon adaptation in Escherichia coli bacteriophage.
Genetics. 2014 May;197(1):301-15. doi: 10.1534/genetics.114.162842. Epub 2014 Feb 28.
2
Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli.
Mol Biol Evol. 2014 Jun;31(6):1606-17. doi: 10.1093/molbev/msu087. Epub 2014 Feb 27.
5
Codon bias is a major factor explaining phage evolution in translationally biased hosts.
J Mol Evol. 2008 Mar;66(3):210-23. doi: 10.1007/s00239-008-9068-6. Epub 2008 Feb 20.
6
Genome dynamics, codon usage patterns and influencing factors in Aeromonas hydrophila phages.
Virus Res. 2022 Oct 15;320:198900. doi: 10.1016/j.virusres.2022.198900. Epub 2022 Aug 24.
7
Single-stranded genomic architecture constrains optimal codon usage.
Bacteriophage. 2011 Jul;1(4):219-224. doi: 10.4161/bact.1.4.18496. Epub 2011 Jul 1.
8
A major controversy in codon-anticodon adaptation resolved by a new codon usage index.
Genetics. 2015 Feb;199(2):573-9. doi: 10.1534/genetics.114.172106. Epub 2014 Dec 5.
10
Genome properties and the limits of adaptation in bacteriophages.
Evolution. 2004 Apr;58(4):692-701. doi: 10.1111/j.0014-3820.2004.tb00402.x.

引用本文的文献

1
The role and application of bioinformatics techniques and tools in drug discovery.
Front Pharmacol. 2025 Feb 13;16:1547131. doi: 10.3389/fphar.2025.1547131. eCollection 2025.
2
Differential Selection for Translation Efficiency Shapes Translation Machineries in Bacterial Species.
Microorganisms. 2024 Apr 10;12(4):768. doi: 10.3390/microorganisms12040768.
3
Specific codons control cellular resources and fitness.
Sci Adv. 2024 Feb 23;10(8):eadk3485. doi: 10.1126/sciadv.adk3485. Epub 2024 Feb 21.
5
Current Status of Endolysin-Based Treatments against Gram-Negative Bacteria.
Antibiotics (Basel). 2021 Sep 22;10(10):1143. doi: 10.3390/antibiotics10101143.
6
7
Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection.
Nat Ecol Evol. 2020 Apr;4(4):589-600. doi: 10.1038/s41559-020-1124-7. Epub 2020 Mar 2.
10
The adaptation of codon usage of +ssRNA viruses to their hosts.
Infect Genet Evol. 2018 Sep;63:175-179. doi: 10.1016/j.meegid.2018.05.034. Epub 2018 Jun 2.

本文引用的文献

1
Position weight matrix, gibbs sampler, and the associated significance tests in motif characterization and prediction.
Scientifica (Cairo). 2012;2012:917540. doi: 10.6064/2012/917540. Epub 2012 Oct 23.
2
DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution.
Mol Biol Evol. 2013 Jul;30(7):1720-8. doi: 10.1093/molbev/mst064. Epub 2013 Apr 5.
3
Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation.
Nucleic Acids Res. 2013 Feb 1;41(3):1914-21. doi: 10.1093/nar/gks986. Epub 2012 Dec 18.
4
DNA replication and strand asymmetry in prokaryotic and mitochondrial genomes.
Curr Genomics. 2012 Mar;13(1):16-27. doi: 10.2174/138920212799034776.
5
An improved implementation of effective number of codons (nc).
Mol Biol Evol. 2013 Jan;30(1):191-6. doi: 10.1093/molbev/mss201. Epub 2012 Aug 21.
6
Phage treatment of human infections.
Bacteriophage. 2011 Mar;1(2):66-85. doi: 10.4161/bact.1.2.15845.
7
Cyanophage tRNAs may have a role in cross-infectivity of oceanic Prochlorococcus and Synechococcus hosts.
ISME J. 2012 Mar;6(3):619-28. doi: 10.1038/ismej.2011.146. Epub 2011 Oct 20.
8
Translation initiation: a regulatory role for poly(A) tracts in front of the AUG codon in Saccharomyces cerevisiae.
Genetics. 2011 Oct;189(2):469-78. doi: 10.1534/genetics.111.132068. Epub 2011 Aug 11.
9
HIV-1 modulates the tRNA pool to improve translation efficiency.
Mol Biol Evol. 2011 Jun;28(6):1827-34. doi: 10.1093/molbev/msr005. Epub 2011 Jan 7.
10
A general model of codon bias due to GC mutational bias.
PLoS One. 2010 Oct 27;5(10):e13431. doi: 10.1371/journal.pone.0013431.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验