Suppr超能文献

大肠杆菌中双链DNA噬菌体和单链DNA噬菌体之间的密码子适应性差异

Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli.

作者信息

Chithambaram Shivapriya, Prabhakaran Ramanandan, Xia Xuhua

机构信息

Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada.

Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada

出版信息

Mol Biol Evol. 2014 Jun;31(6):1606-17. doi: 10.1093/molbev/msu087. Epub 2014 Feb 27.

Abstract

Because phages use their host translation machinery, their codon usage should evolve toward that of highly expressed host genes. We used two indices to measure codon adaptation of phages to their host, rRSCU (the correlation in relative synonymous codon usage [RSCU] between phages and their host) and Codon Adaptation Index (CAI) computed with highly expressed host genes as the reference set (because phage translation depends on host translation machinery). These indices used for this purpose are appropriate only when hosts exhibit little mutation bias, so only phages parasitizing Escherichia coli were included in the analysis. For double-stranded DNA (dsDNA) phages, both r(RSCU) and CAI decrease with increasing number of transfer RNA genes encoded by the phage genome. r(RSCU) is greater for dsDNA phages than for single-stranded DNA (ssDNA) phages, and the low r(RSCU) values are mainly due to poor concordance in RSCU values for Y-ending codons between ssDNA phages and the E. coli host, consistent with the predicted effect of C→T mutation bias in the ssDNA phages. Strong C→T mutation bias would improve codon adaptation in codon families (e.g., Gly) where U-ending codons are favored over C-ending codons ("U-friendly" codon families) by highly expressed host genes but decrease codon adaptation in other codon families where highly expressed host genes favor C-ending codons against U-ending codons ("U-hostile" codon families). It is remarkable that ssDNA phages with increasing C→T mutation bias also increased the usage of codons in the "U-friendly" codon families, thereby achieving CAI values almost as large as those of dsDNA phages. This represents a new type of codon adaptation.

摘要

由于噬菌体利用其宿主的翻译机制,它们的密码子使用情况应朝着高表达宿主基因的密码子使用情况演变。我们使用了两个指标来衡量噬菌体对其宿主的密码子适应性,即rRSCU(噬菌体与其宿主之间相对同义密码子使用情况[RSCU]的相关性)和以高表达宿主基因作为参考集计算的密码子适应性指数(CAI)(因为噬菌体翻译依赖于宿主翻译机制)。仅当宿主表现出很小的突变偏向性时,用于此目的的这些指标才适用,因此分析中仅纳入了寄生于大肠杆菌的噬菌体。对于双链DNA(dsDNA)噬菌体,r(RSCU)和CAI均随着噬菌体基因组编码的转运RNA基因数量的增加而降低。dsDNA噬菌体的r(RSCU)大于单链DNA(ssDNA)噬菌体,而ssDNA噬菌体的r(RSCU)值较低主要是由于ssDNA噬菌体与大肠杆菌宿主之间Y结尾密码子的RSCU值一致性较差,这与ssDNA噬菌体中C→T突变偏向性的预测效应一致。强烈的C→T突变偏向性会改善高表达宿主基因青睐U结尾密码子而非C结尾密码子的密码子家族(例如甘氨酸)中的密码子适应性(“U友好”密码子家族),但会降低高表达宿主基因青睐C结尾密码子而非U结尾密码子的其他密码子家族中的密码子适应性(“U敌对”密码子家族)。值得注意的是,具有增加的C→T突变偏向性的ssDNA噬菌体也增加了“U友好”密码子家族中密码子的使用,从而使CAI值几乎与dsDNA噬菌体的CAI值一样大。这代表了一种新型的密码子适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb91/4032129/9b170755e897/msu087f1.jpg

相似文献

1
Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli.
Mol Biol Evol. 2014 Jun;31(6):1606-17. doi: 10.1093/molbev/msu087. Epub 2014 Feb 27.
2
The effect of mutation and selection on codon adaptation in Escherichia coli bacteriophage.
Genetics. 2014 May;197(1):301-15. doi: 10.1534/genetics.114.162842. Epub 2014 Feb 28.
3
Genome dynamics, codon usage patterns and influencing factors in Aeromonas hydrophila phages.
Virus Res. 2022 Oct 15;320:198900. doi: 10.1016/j.virusres.2022.198900. Epub 2022 Aug 24.
5
Single-stranded genomic architecture constrains optimal codon usage.
Bacteriophage. 2011 Jul;1(4):219-224. doi: 10.4161/bact.1.4.18496. Epub 2011 Jul 1.
6
Aeromonas phages encode tRNAs for their overused codons.
Int J Comput Biol Drug Des. 2014;7(2-3):168-82. doi: 10.1504/IJCBDD.2014.061645. Epub 2014 May 28.
7
Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes.
Gene. 2005 Jan 17;345(1):13-20. doi: 10.1016/j.gene.2004.11.019. Epub 2004 Dec 19.
8
Analysis of codon usage bias of Crimean-Congo hemorrhagic fever virus and its adaptation to hosts.
Infect Genet Evol. 2018 Mar;58:1-16. doi: 10.1016/j.meegid.2017.11.027. Epub 2017 Dec 6.
9
Codon bias is a major factor explaining phage evolution in translationally biased hosts.
J Mol Evol. 2008 Mar;66(3):210-23. doi: 10.1007/s00239-008-9068-6. Epub 2008 Feb 20.
10
Analysis of synonymous codon usage bias in helicase gene from Autographa californica multiple nucleopolyhedrovirus.
Genes Genomics. 2018 Jul;40(7):767-780. doi: 10.1007/s13258-018-0689-x. Epub 2018 Apr 6.

引用本文的文献

1
Genomic AT Bias Coupled with Amino Acid Metabolism Modulates Codon Usage.
J Mol Evol. 2025 May 20. doi: 10.1007/s00239-025-10251-x.
3
Differential Selection for Translation Efficiency Shapes Translation Machineries in Bacterial Species.
Microorganisms. 2024 Apr 10;12(4):768. doi: 10.3390/microorganisms12040768.
4
A Novel Phage Lineage with a Broad Host Range and Small Burst Size.
Microbiol Spectr. 2022 Aug 31;10(4):e0149922. doi: 10.1128/spectrum.01499-22. Epub 2022 Jul 11.
5
GPR120 modulates epileptic seizure and neuroinflammation mediated by NLRP3 inflammasome.
J Neuroinflammation. 2022 May 27;19(1):121. doi: 10.1186/s12974-022-02482-2.
7
Nucleotide Composition and Codon Usage Across Viruses and Their Respective Hosts.
Front Microbiol. 2021 Jun 28;12:646300. doi: 10.3389/fmicb.2021.646300. eCollection 2021.
8
Rapid discovery of novel prophages using biological feature engineering and machine learning.
NAR Genom Bioinform. 2021 Jan 6;3(1):lqaa109. doi: 10.1093/nargab/lqaa109. eCollection 2021 Mar.
9
ΦX174 Attenuation by Whole-Genome Codon Deoptimization.
Genome Biol Evol. 2021 Feb 3;13(2). doi: 10.1093/gbe/evaa214.
10

本文引用的文献

1
DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution.
Mol Biol Evol. 2013 Jul;30(7):1720-8. doi: 10.1093/molbev/mst064. Epub 2013 Apr 5.
2
Contributions of speed and accuracy to translational selection in bacteria.
PLoS One. 2012;7(12):e51652. doi: 10.1371/journal.pone.0051652. Epub 2012 Dec 14.
3
Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation.
Nucleic Acids Res. 2013 Feb 1;41(3):1914-21. doi: 10.1093/nar/gks986. Epub 2012 Dec 18.
5
An improved implementation of effective number of codons (nc).
Mol Biol Evol. 2013 Jan;30(1):191-6. doi: 10.1093/molbev/mss201. Epub 2012 Aug 21.
6
CBDB: the codon bias database.
BMC Bioinformatics. 2012 Apr 26;13:62. doi: 10.1186/1471-2105-13-62.
7
Single-stranded genomic architecture constrains optimal codon usage.
Bacteriophage. 2011 Jul;1(4):219-224. doi: 10.4161/bact.1.4.18496. Epub 2011 Jul 1.
8
Phage treatment of human infections.
Bacteriophage. 2011 Mar;1(2):66-85. doi: 10.4161/bact.1.2.15845.
9
PHACTS, a computational approach to classifying the lifestyle of phages.
Bioinformatics. 2012 Mar 1;28(5):614-8. doi: 10.1093/bioinformatics/bts014. Epub 2012 Jan 11.
10
Cyanophage tRNAs may have a role in cross-infectivity of oceanic Prochlorococcus and Synechococcus hosts.
ISME J. 2012 Mar;6(3):619-28. doi: 10.1038/ismej.2011.146. Epub 2011 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验