Suppr超能文献

单链基因组结构限制了最优密码子使用。

Single-stranded genomic architecture constrains optimal codon usage.

作者信息

Cardinale Daniel J, Duffy Siobain

机构信息

Department of Ecology, Evolution and Natural Resources; School of Environmental and Biological Sciences; Rutgers; The State University of New Jersey; New Brunswick, NJ USA.

出版信息

Bacteriophage. 2011 Jul;1(4):219-224. doi: 10.4161/bact.1.4.18496. Epub 2011 Jul 1.

Abstract

Viral codon usage is shaped by the conflicting forces of mutational pressure and selection to match host patterns for optimal expression. We examined whether genomic architecture (single- or double-stranded DNA) influences the degree to which bacteriophage codon usage differ from their primary bacterial hosts and each other. While both correlated equally with their hosts' genomic nucleotide content, the coat genes of ssDNA phages were less well adapted than those of dsDNA phages to their hosts' codon usage profiles due to their preference for codons ending in thymine. No specific biases were detected in dsDNA phage genomes. In all nine of ten cases of codon redundancy in which a specific codon was overrepresented, ssDNA phages favored the NNT codon. A cytosine to thymine biased mutational pressure working in conjunction with strong selection against non-synonymous mutations appears be shaping codon usage bias in ssDNA viral genomes.

摘要

病毒密码子使用情况受到突变压力和选择这两种相互冲突的力量的影响,以匹配宿主模式从而实现最佳表达。我们研究了基因组结构(单链或双链DNA)是否会影响噬菌体密码子使用情况与其主要细菌宿主以及彼此之间的差异程度。虽然两者与宿主的基因组核苷酸含量的相关性相同,但由于单链DNA噬菌体对以胸腺嘧啶结尾的密码子的偏好,其外壳基因比双链DNA噬菌体的外壳基因对宿主密码子使用谱的适应性更差。在双链DNA噬菌体基因组中未检测到特定偏差。在十种密码子冗余的情况中有九种,即特定密码子出现频率过高的情况,单链DNA噬菌体偏好NNT密码子。胞嘧啶到胸腺嘧啶的偏向性突变压力与针对非同义突变的强烈选择共同作用,似乎正在塑造单链DNA病毒基因组中的密码子使用偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aec1/3278643/85e63a11c0c2/bact-1-219-g1.jpg

相似文献

1
Single-stranded genomic architecture constrains optimal codon usage.
Bacteriophage. 2011 Jul;1(4):219-224. doi: 10.4161/bact.1.4.18496. Epub 2011 Jul 1.
2
Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli.
Mol Biol Evol. 2014 Jun;31(6):1606-17. doi: 10.1093/molbev/msu087. Epub 2014 Feb 27.
3
The effect of mutation and selection on codon adaptation in Escherichia coli bacteriophage.
Genetics. 2014 May;197(1):301-15. doi: 10.1534/genetics.114.162842. Epub 2014 Feb 28.
5
A general model of codon bias due to GC mutational bias.
PLoS One. 2010 Oct 27;5(10):e13431. doi: 10.1371/journal.pone.0013431.
6
Genomic factors shaping codon usage across the Saccharomycotina subphylum.
bioRxiv. 2024 May 24:2024.05.23.595506. doi: 10.1101/2024.05.23.595506.
8
Genomic factors shaping codon usage across the Saccharomycotina subphylum.
G3 (Bethesda). 2024 Nov 6;14(11). doi: 10.1093/g3journal/jkae207.
9
Synonymous codon usage bias in 16 Staphylococcus aureus phages: implication in phage therapy.
Virus Res. 2005 Nov;113(2):123-31. doi: 10.1016/j.virusres.2005.05.001.

引用本文的文献

2
phage MATE 2: a novel bacteriophage with potent lytic activity against subsp. .
Front Microbiol. 2024 May 28;15:1412650. doi: 10.3389/fmicb.2024.1412650. eCollection 2024.
3
Widespread, human-associated redondoviruses infect the commensal protozoan Entamoeba gingivalis.
Cell Host Microbe. 2023 Jan 11;31(1):58-68.e5. doi: 10.1016/j.chom.2022.11.002. Epub 2022 Dec 1.
4
Propagation of viral genomes by replicating ammonia-oxidising archaea during soil nitrification.
ISME J. 2023 Feb;17(2):309-314. doi: 10.1038/s41396-022-01341-5. Epub 2022 Nov 21.
6
Prophage Diversity Across and Verotoxin-Producing in Agricultural Niches of British Columbia, Canada.
Front Microbiol. 2022 Jul 22;13:853703. doi: 10.3389/fmicb.2022.853703. eCollection 2022.
7
The Dynamic Codon Biaser: calculating prokaryotic codon usage biases.
Microb Genom. 2021 Oct;7(10). doi: 10.1099/mgen.0.000663.
8
Entamoeba and Giardia parasites implicated as hosts of CRESS viruses.
Nat Commun. 2020 Sep 15;11(1):4620. doi: 10.1038/s41467-020-18474-w.
9
Identification of a novel archaea virus, detected in hydrocarbon polluted Hungarian and Canadian samples.
PLoS One. 2020 Apr 17;15(4):e0231864. doi: 10.1371/journal.pone.0231864. eCollection 2020.

本文引用的文献

1
Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus.
BMC Evol Biol. 2010 Aug 19;10:253. doi: 10.1186/1471-2148-10-253.
2
Viral mutation rates.
J Virol. 2010 Oct;84(19):9733-48. doi: 10.1128/JVI.00694-10. Epub 2010 Jul 21.
3
Bacteriophage host range and bacterial resistance.
Adv Appl Microbiol. 2010;70:217-48. doi: 10.1016/S0065-2164(10)70007-1. Epub 2010 Mar 6.
4
A structural model for the single-stranded DNA genome of filamentous bacteriophage Pf1.
Biochemistry. 2010 Mar 2;49(8):1737-43. doi: 10.1021/bi901323a.
5
Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences.
Mol Syst Biol. 2009;5:311. doi: 10.1038/msb.2009.71. Epub 2009 Oct 13.
6
Point mutation rate of bacteriophage PhiX174.
Genetics. 2009 Oct;183(2):747-9. doi: 10.1534/genetics.109.106005. Epub 2009 Aug 3.
7
An improved implementation of codon adaptation index.
Evol Bioinform Online. 2007 May 17;3:53-8.
8
Codon usage bias is correlated with gene expression levels in the fission yeast Schizosaccharomyces pombe.
Genes Cells. 2009 Apr;14(4):499-509. doi: 10.1111/j.1365-2443.2009.01284.x.
9
Selection on codon bias.
Annu Rev Genet. 2008;42:287-99. doi: 10.1146/annurev.genet.42.110807.091442.
10
CAIcal: a combined set of tools to assess codon usage adaptation.
Biol Direct. 2008 Sep 16;3:38. doi: 10.1186/1745-6150-3-38.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验