Suppr超能文献

高光条件下,当光合作用的氧化还原和活性氧代谢发生改变时,光能捕获突变体会表现出不同的基因表达。

Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism.

机构信息

Molecular Plant Biology, Department of Biochemistry, University of Turku, , 20014 Turku, Finland.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2014 Mar 3;369(1640):20130229. doi: 10.1098/rstb.2013.0229. Print 2014 Apr 19.

Abstract

The amount of light energy that is harvested and directed to the photosynthetic machinery is regulated in order to control the production of reactive oxygen species (ROS) in leaf tissues. ROS have important roles as signalling factors that instigate and mediate a range of cellular responses, suggesting that the mechanisms regulating light-harvesting and photosynthetic energy transduction also affect cell signalling. In this study, we exposed wild-type (WT) Arabidopsis and mutants impaired in the regulation of photosynthetic light-harvesting (stn7, tap38 and npq4) to transient high light (HL) stress in order to study the role of these mechanisms for up- and downregulation of gene expression under HL stress. The mutants, all of which have disturbed regulation of excitation energy transfer and distribution, responded to transient HL treatment with surprising similarity to the WT in terms of general 'abiotic stress-regulated' genes associated with hydrogen peroxide and 12-oxo-phytodienoic acid signalling. However, we identified distinct expression profiles in each genotype with respect to induction of singlet oxygen and jasmonic acid-dependent responses. The results of this study suggest that the control of excitation energy transfer interacts with hormonal regulation. Furthermore, the photosynthetic pigment-protein complexes appear to operate as receptors that sense the energetic balance between the photosynthetic light reactions and downstream metabolism.

摘要

为了控制叶片组织中活性氧(ROS)的产生,被收获并引导至光合作用机器的光能被调节。ROS 作为信号因子具有重要作用,可引发和介导多种细胞反应,这表明调节光能捕获和光合作用能量转导的机制也会影响细胞信号转导。在这项研究中,我们使野生型(WT)拟南芥和光合作用光捕获调节受损的突变体(stn7、tap38 和 npq4)暴露于短暂的高光(HL)胁迫下,以研究这些机制在 HL 胁迫下对基因表达的上调和下调的作用。这些突变体的激发能传递和分布调节都受到干扰,它们对短暂的 HL 处理的反应与 WT 非常相似,与与过氧化氢和 12-氧-植物二烯酸信号有关的一般“非生物胁迫调节”基因有关。然而,我们在每种基因型中都发现了与单线态氧诱导和茉莉酸依赖反应相关的不同表达谱。这项研究的结果表明,激发能传递的控制与激素调节相互作用。此外,光合色素-蛋白复合物似乎作为受体发挥作用,感知光合作用光反应和下游代谢之间的能量平衡。

相似文献

1
Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism.
Philos Trans R Soc Lond B Biol Sci. 2014 Mar 3;369(1640):20130229. doi: 10.1098/rstb.2013.0229. Print 2014 Apr 19.
2
Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana.
Plant Physiol Biochem. 2014 Aug;81:44-53. doi: 10.1016/j.plaphy.2014.01.019. Epub 2014 Feb 6.
3
STN7 is not essential for developmental acclimation of Arabidopsis to light intensity.
Plant J. 2023 Jun;114(6):1458-1474. doi: 10.1111/tpj.16204. Epub 2023 Apr 11.
4
Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana.
J Biol Chem. 2005 Feb 18;280(7):5318-28. doi: 10.1074/jbc.M406358200. Epub 2004 Nov 23.
5
High Light Acclimation Mechanisms Deficient in a PsbS-Knockout Arabidopsis Mutant.
Int J Mol Sci. 2022 Feb 28;23(5):2695. doi: 10.3390/ijms23052695.
7
The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana.
Biochim Biophys Acta. 2012 Dec;1817(12):2158-65. doi: 10.1016/j.bbabio.2012.09.011. Epub 2012 Sep 19.
9
On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant.
Philos Trans R Soc Lond B Biol Sci. 2014 Mar 3;369(1640):20130221. doi: 10.1098/rstb.2013.0221. Print 2014 Apr 19.
10
Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment.
Philos Trans R Soc Lond B Biol Sci. 2012 Dec 19;367(1608):3466-74. doi: 10.1098/rstb.2012.0064.

引用本文的文献

1
Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks.
Mol Cell Proteomics. 2024 Nov;23(11):100845. doi: 10.1016/j.mcpro.2024.100845. Epub 2024 Sep 24.
2
Honoring two stalwarts of photosynthesis research: Eva-Mari Aro and Govindjee.
Photosynth Res. 2023 Jul;157(1):43-51. doi: 10.1007/s11120-022-00988-7. Epub 2023 Feb 27.
3
Simultaneous Ozone and High Light Treatments Reveal an Important Role for the Chloroplast in Co-ordination of Defense Signaling.
Front Plant Sci. 2022 Jul 7;13:883002. doi: 10.3389/fpls.2022.883002. eCollection 2022.
6
Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses.
Front Plant Sci. 2021 Jan 28;11:615942. doi: 10.3389/fpls.2020.615942. eCollection 2020.
7
Chloroplast-associated molecular patterns as concept for fine-tuned operational retrograde signalling.
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190443. doi: 10.1098/rstb.2019.0443. Epub 2020 May 4.
8
Photosynthetic signalling during high light stress and recovery: targets and dynamics.
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190406. doi: 10.1098/rstb.2019.0406. Epub 2020 May 4.
10
Stress Responses of Shade-Treated Tea Leaves to High Light Exposure after Removal of Shading.
Plants (Basel). 2020 Mar 1;9(3):302. doi: 10.3390/plants9030302.

本文引用的文献

1
Integrative regulatory network of plant thylakoid energy transduction.
Trends Plant Sci. 2014 Jan;19(1):10-7. doi: 10.1016/j.tplants.2013.09.003. Epub 2013 Oct 9.
2
ROS signaling loops - production, perception, regulation.
Curr Opin Plant Biol. 2013 Oct;16(5):575-82. doi: 10.1016/j.pbi.2013.07.002. Epub 2013 Jul 20.
3
Retrograde signals galore.
Front Plant Sci. 2013 Mar 12;4:45. doi: 10.3389/fpls.2013.00045. eCollection 2013.
4
ROS-mediated lipid peroxidation and RES-activated signaling.
Annu Rev Plant Biol. 2013;64:429-50. doi: 10.1146/annurev-arplant-050312-120132. Epub 2013 Feb 28.
5
Redox signaling in plants.
Antioxid Redox Signal. 2013 Jun 1;18(16):2087-90. doi: 10.1089/ars.2013.5278. Epub 2013 Mar 28.
7
ROS-talk - how the apoplast, the chloroplast, and the nucleus get the message through.
Front Plant Sci. 2012 Dec 27;3:292. doi: 10.3389/fpls.2012.00292. eCollection 2012.
8
STN7 Operates in Retrograde Signaling through Controlling Redox Balance in the Electron Transfer Chain.
Front Plant Sci. 2012 Dec 19;3:277. doi: 10.3389/fpls.2012.00277. eCollection 2012.
9
Regulation of the photosynthetic apparatus under fluctuating growth light.
Philos Trans R Soc Lond B Biol Sci. 2012 Dec 19;367(1608):3486-93. doi: 10.1098/rstb.2012.0067.
10
Redox regulation of photosynthetic gene expression.
Philos Trans R Soc Lond B Biol Sci. 2012 Dec 19;367(1608):3475-85. doi: 10.1098/rstb.2012.0068.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验