Striedter Georg F, Belgard T Grant, Chen Chun-Chun, Davis Fred P, Finlay Barbara L, Güntürkün Onur, Hale Melina E, Harris Julie A, Hecht Erin E, Hof Patrick R, Hofmann Hans A, Holland Linda Z, Iwaniuk Andrew N, Jarvis Erich D, Karten Harvey J, Katz Paul S, Kristan William B, Macagno Eduardo R, Mitra Partha P, Moroz Leonid L, Preuss Todd M, Ragsdale Clifton W, Sherwood Chet C, Stevens Charles F, Stüttgen Maik C, Tsumoto Tadaharu, Wilczynski Walter
Department of Neurobiology and Behavior, University of California Irvine, Irvine, Calif., USA.
Brain Behav Evol. 2014;83(1):1-8. doi: 10.1159/000360152. Epub 2014 Feb 28.
Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.
联邦政府的“通过推动创新神经技术开展脑研究”(BRAIN)计划为理解神经系统的结构和功能的努力注入了新的动力。比较分析有助于这一努力,通过发现神经回路设计、信息处理以及基因-结构-功能关系的一般原则,而这些原则在对单一物种的研究中并不明显。我们在此提议将比较方法扩展到包含分子、解剖和生理数据的神经系统“图谱”。这项研究将确定哪些神经特征可能在物种间具有普遍性,哪些不太可能广泛保守。它还将揭示基因、发育、成年解剖结构、生理机能以及最终行为之间的因果关系。然后可以通过实验来检验这些因果假设。最后,比较研究的见解能够启发并指导技术发展。为推动这一研究议程,我们建议研究团队围绕特定研究问题联合起来,并选择一组“参考物种”来支撑他们的比较分析。选择这些参考物种不仅要考虑实际优势,还要考虑它们的系统发育位置、行为模式、注释完善的基因组或其他战略因素。我们设想这些参考物种的神经系统将比其他物种得到更详细的绘制。根据研究问题,收集的数据可能从分子层面到行为层面不等。为了整合不同分析层面和不同物种的数据,必须制定并遵守数据收集、注释、存档和分发的标准。为此,组建专注于有组织的数据收集、分发和培训的研究人员网络或联盟以及科学、技术和教育中心会有所帮助。这些活动至少部分可以通过美国国家科学基金会(NSF)、美国国立卫生研究院(NIH)和其他机构的现有机制来支持。开发用于跨物种数据分析的新的集成软件和数据库系统也很重要。应该在财政上支持开发此类分析工具的多学科努力。最后,应该创造培训机会,以激发对脑结构、功能和进化的多学科综合研究。