Suppr超能文献

大规模比较神经影像学:我们在哪里,我们需要什么?

Large-scale comparative neuroimaging: Where are we and what do we need?

机构信息

Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France; Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.

出版信息

Cortex. 2019 Sep;118:188-202. doi: 10.1016/j.cortex.2018.11.028. Epub 2018 Dec 8.

Abstract

Neuroimaging has a lot to offer comparative neuroscience. Although invasive "gold standard" techniques have a better spatial resolution, neuroimaging allows fast, whole-brain, repeatable, and multi-modal measurements of structure and function in living animals and post-mortem tissue. In the past years, comparative neuroimaging has increased in popularity. However, we argue that its most significant potential lies in its ability to collect large-scale datasets of many species to investigate principles of variability in brain organisation across whole orders of species-an ambition that is presently unfulfilled but achievable. We briefly review the current state of the field and explore what the current obstacles to such an approach are. We propose some calls to action.

摘要

神经影像学为比较神经科学提供了很多支持。虽然有创的“金标准”技术具有更好的空间分辨率,但神经影像学允许对活体动物和死后组织的结构和功能进行快速、全脑、可重复和多模态的测量。在过去几年中,比较神经影像学越来越受欢迎。然而,我们认为它最重要的潜力在于能够收集许多物种的大规模数据集,以研究整个物种范围内大脑组织变异性的原则——这一目标目前尚未实现,但是可以实现的。我们简要回顾了该领域的现状,并探讨了实现这一方法的当前障碍。我们提出了一些行动呼吁。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验