Suppr超能文献

系统肿瘤学:通过多尺度数学建模为患者制定特定的治疗方案。

Systems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling.

机构信息

Division of Mathematics, University of Dundee, Dundee DD1 4HN, UK.

The Biocomplexity Institute and Department of Physics, Indiana University Bloomington, Bloomington, IN, USA.

出版信息

Semin Cancer Biol. 2015 Feb;30:13-20. doi: 10.1016/j.semcancer.2014.02.003. Epub 2014 Mar 4.

Abstract

The multiscale complexity of cancer as a disease necessitates a corresponding multiscale modelling approach to produce truly predictive mathematical models capable of improving existing treatment protocols. To capture all the dynamics of solid tumour growth and its progression, mathematical modellers need to couple biological processes occurring at various spatial and temporal scales (from genes to tissues). Because effectiveness of cancer therapy is considerably affected by intracellular and extracellular heterogeneities as well as by the dynamical changes in the tissue microenvironment, any model attempt to optimise existing protocols must consider these factors ultimately leading to improved multimodal treatment regimes. By improving existing and building new mathematical models of cancer, modellers can play important role in preventing the use of potentially sub-optimal treatment combinations. In this paper, we analyse a multiscale computational mathematical model for cancer growth and spread, incorporating the multiple effects of radiation therapy and chemotherapy in the patient survival probability and implement the model using two different cell based modelling techniques. We show that the insights provided by such multiscale modelling approaches can ultimately help in designing optimal patient-specific multi-modality treatment protocols that may increase patients quality of life.

摘要

癌症作为一种疾病的多尺度复杂性需要相应的多尺度建模方法来产生真正具有预测能力的数学模型,从而改进现有的治疗方案。为了捕捉实体瘤生长及其进展的所有动力学,数学建模者需要在不同的空间和时间尺度上(从基因到组织)耦合发生的生物学过程。由于癌症治疗的效果受到细胞内和细胞外异质性以及组织微环境中动态变化的极大影响,任何旨在优化现有方案的模型都必须最终考虑这些因素,从而导致改进的多模式治疗方案。通过改进现有的和构建新的癌症数学模型,建模者可以在防止使用潜在次优治疗组合方面发挥重要作用。在本文中,我们分析了一个用于癌症生长和扩散的多尺度计算数学模型,该模型将放射治疗和化学治疗的多种效果纳入到患者生存概率中,并使用两种不同的基于细胞的建模技术来实现该模型。我们表明,这种多尺度建模方法提供的见解最终有助于设计最佳的患者特异性多模态治疗方案,从而提高患者的生活质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验