Suppr超能文献

贝叶斯空间滤波器用于源信号提取:周围神经研究。

Bayesian spatial filters for source signal extraction: a study in the peripheral nerve.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):302-11. doi: 10.1109/TNSRE.2014.2303472.

Abstract

The ability to extract physiological source signals to control various prosthetics offer tremendous therapeutic potential to improve the quality of life for patients suffering from motor disabilities. Regardless of the modality, recordings of physiological source signals are contaminated with noise and interference along with crosstalk between the sources. These impediments render the task of isolating potential physiological source signals for control difficult. In this paper, a novel Bayesian Source Filter for signal Extraction (BSFE) algorithm for extracting physiological source signals for control is presented. The BSFE algorithm is based on the source localization method Champagne and constructs spatial filters using Bayesian methods that simultaneously maximize the signal to noise ratio of the recovered source signal of interest while minimizing crosstalk interference between sources. When evaluated over peripheral nerve recordings obtained in vivo, the algorithm achieved the highest signal to noise interference ratio ( 7.00 ±3.45 dB) amongst the group of methodologies compared with average correlation between the extracted source signal and the original source signal R = 0.93. The results support the efficacy of the BSFE algorithm for extracting source signals from the peripheral nerve.

摘要

提取生理源信号以控制各种假肢的能力为患有运动障碍的患者提供了极大的治疗潜力,以提高他们的生活质量。无论采用哪种方式,生理源信号的记录都受到噪声和干扰以及源之间串扰的污染。这些障碍使得隔离用于控制的潜在生理源信号的任务变得困难。在本文中,提出了一种用于控制的新型贝叶斯源滤波器信号提取 (BSFE) 算法。BSFE 算法基于 Champagne 的源定位方法,并使用贝叶斯方法构建空间滤波器,该方法同时最大化感兴趣的恢复源信号的信噪比,同时最小化源之间的串扰干扰。当在体内获得的周围神经记录上进行评估时,与比较组中的其他方法相比,该算法实现了最高的信号噪声干扰比 (7.00 ±3.45 dB),提取的源信号与原始源信号之间的平均相关系数 R = 0.93。结果支持 BSFE 算法从周围神经中提取源信号的有效性。

相似文献

2
An algorithm for source signal extraction from the peripheral nerve.一种从周围神经提取源信号的算法。
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4251-4. doi: 10.1109/IEMBS.2011.6091055.
5
6
Selective recovery of fascicular activity in peripheral nerves.选择性恢复周围神经中的束状活性。
J Neural Eng. 2011 Oct;8(5):056005. doi: 10.1088/1741-2560/8/5/056005. Epub 2011 Aug 9.
9
Blind source separation of peripheral nerve recordings.外周神经记录的盲源分离
J Neural Eng. 2007 Sep;4(3):S157-67. doi: 10.1088/1741-2560/4/3/S03. Epub 2007 Jun 25.

引用本文的文献

1
Spatio-temporal feature extraction in sensory electroneurographic signals.感觉神经电图信号的时空特征提取。
Philos Trans A Math Phys Eng Sci. 2022 Jul 25;380(2228):20210268. doi: 10.1098/rsta.2021.0268. Epub 2022 Jun 6.

本文引用的文献

1
Intention-based EMG control for powered exoskeletons.基于意图的肌电控制在动力外骨骼中的应用。
IEEE Trans Biomed Eng. 2012 Aug;59(8):2180-90. doi: 10.1109/TBME.2012.2198821. Epub 2012 May 10.
4
Brain computer interfaces, a review.脑机接口:综述。
Sensors (Basel). 2012;12(2):1211-79. doi: 10.3390/s120201211. Epub 2012 Jan 31.
7
Brain-computer interfaces using electrocorticographic signals.脑-机接口使用脑电图信号。
IEEE Rev Biomed Eng. 2011;4:140-54. doi: 10.1109/RBME.2011.2172408.
8
Recovery of neural activity from nerve cuff electrodes.从神经袖套电极恢复神经活动。
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4653-6. doi: 10.1109/IEMBS.2011.6091152.
10
Adaptive estimation of EEG-rhythms for optimal band identification in BCI.脑机接口中用于最优频段识别的 EEG 节律自适应估计。
J Neurosci Methods. 2012 Jan 15;203(1):163-72. doi: 10.1016/j.jneumeth.2011.08.035. Epub 2011 Sep 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验