Suppr超能文献

利用惩罚方法鉴定癌症研究中的基因-环境交互作用。

Identification of gene-environment interactions in cancer studies using penalization.

机构信息

UIC School of Public Health, Division of Epidemiology and Biostatistics, (MC 923), 1603 West Taylor Street, 987 SPHPI, Chicago, IL 60612, USA.

出版信息

Genomics. 2013 Oct;102(4):189-94. doi: 10.1016/j.ygeno.2013.08.006. Epub 2013 Aug 29.

Abstract

High-throughput cancer studies have been extensively conducted, searching for genetic markers associated with outcomes beyond clinical and environmental risk factors. Gene-environment interactions can have important implications beyond main effects. The commonly-adopted single-marker analysis cannot accommodate the joint effects of a large number of markers. The existing joint-effects methods also have limitations. Specifically, they may suffer from high computational cost, do not respect the "main effect, interaction" hierarchical structure, or use ineffective techniques. We develop a penalization method for the identification of important G × E interactions and main effects. It has an intuitive formulation, respects the hierarchical structure, accommodates the joint effects of multiple markers, and is computationally affordable. In numerical study, we analyze prognosis data under the AFT (accelerated failure time) model. Simulation shows satisfactory performance of the proposed method. Analysis of an NHL (non-Hodgkin lymphoma) study with SNP measurements shows that the proposed method identifies markers with important implications and satisfactory prediction performance.

摘要

高通量癌症研究已经广泛开展,旨在寻找与临床和环境风险因素以外的结果相关的遗传标记物。基因-环境相互作用除了主要效应之外还有重要的意义。常用的单标记分析方法无法适应大量标记物的联合效应。现有的联合效应方法也存在局限性。具体来说,它们可能存在计算成本高、不尊重“主效应,交互作用”层次结构或使用无效技术等问题。我们开发了一种用于识别重要 G×E 相互作用和主效应的惩罚方法。它具有直观的公式,尊重层次结构,适应多个标记物的联合效应,并且计算成本合理。在数值研究中,我们在 AFT(加速失效时间)模型下分析预后数据。模拟结果表明,所提出的方法具有令人满意的性能。对 SNP 测量的 NHL(非霍奇金淋巴瘤)研究的分析表明,所提出的方法可以识别具有重要意义和令人满意的预测性能的标记物。

相似文献

2

引用本文的文献

1
High-Dimensional Gene-Environment Interaction Analysis.高维基因-环境相互作用分析
Annu Rev Stat Appl. 2025 Mar;12. doi: 10.1146/annurev-statistics-112723-034315. Epub 2024 Sep 11.
5
Gene-environment interaction analysis via deep learning.基于深度学习的基因-环境交互作用分析。
Genet Epidemiol. 2023 Apr;47(3):261-286. doi: 10.1002/gepi.22518. Epub 2023 Feb 19.
6
A scalable hierarchical lasso for gene-environment interactions.一种用于基因-环境相互作用的可扩展分层套索法。
J Comput Graph Stat. 2022;31(4):1091-1103. doi: 10.1080/10618600.2022.2039161. Epub 2022 Mar 31.
10
Identification of gene-environment interactions with marginal penalization.边缘惩罚法鉴定基因-环境交互作用。
Genet Epidemiol. 2020 Mar;44(2):159-196. doi: 10.1002/gepi.22270. Epub 2019 Nov 14.

本文引用的文献

1
A LASSO FOR HIERARCHICAL INTERACTIONS.用于分层交互的套索法
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.
2
Semiparametric Regression Pursuit.半参数回归追踪
Stat Sin. 2012 Oct 1;22(4):1403-1426. doi: 10.5705/ss.2010.298.
3
Risk Factors of Follicular Lymphoma.滤泡性淋巴瘤的危险因素
Expert Opin Med Diagn. 2012 Jul 1;6(4):323-333. doi: 10.1517/17530059.2012.686996. Epub 2012 May 8.
6
Risk Factors of Non-Hodgkin Lymphoma.非霍奇金淋巴瘤的危险因素
Expert Opin Med Diagn. 2011 Nov 1;5(6):539-550. doi: 10.1517/17530059.2011.618185.
9
Survival analysis with high-dimensional covariates.高维协变量的生存分析。
Stat Methods Med Res. 2010 Feb;19(1):29-51. doi: 10.1177/0962280209105024. Epub 2009 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验