Department of Preventive Medicine, University of Southern California , Los Angeles, CA , USA ; Department of Psychology, University of Southern California , Los Angeles, CA , USA.
Department of Preventive Medicine, University of Southern California , Los Angeles, CA , USA.
Front Public Health. 2014 Feb 28;2:12. doi: 10.3389/fpubh.2014.00012. eCollection 2014.
Despite the known advantages of objective physical activity monitors (e.g., accelerometers), these devices have high rates of non-wear, which leads to missing data. Objective activity monitors are also unable to capture valuable contextual information about behavior. Adolescents recruited into physical activity surveillance and intervention studies will increasingly have smartphones, which are miniature computers with built-in motion sensors.
This paper describes the design and development of a smartphone application ("app") called Mobile Teen that combines objective and self-report assessment strategies through (1) sensor-informed context-sensitive ecological momentary assessment (CS-EMA) and (2) sensor-assisted end-of-day recall.
The Mobile Teen app uses the mobile phone's built-in motion sensor to automatically detect likely bouts of phone non-wear, sedentary behavior, and physical activity. The app then uses transitions between these inferred states to trigger CS-EMA self-report surveys measuring the type, purpose, and context of activity in real-time. The end of the day recall component of the Mobile Teen app allows users to interactively review and label their own physical activity data each evening using visual cues from automatically detected major activity transitions from the phone's built-in motion sensors. Major activity transitions are identified by the app, which cues the user to label that "chunk," or period, of time using activity categories.
Sensor-driven CS-EMA and end-of-day recall smartphone apps can be used to augment physical activity data collected by objective activity monitors, filling in gaps during non-wear bouts and providing additional real-time data on environmental, social, and emotional correlates of behavior. Smartphone apps such as these have potential for affordable deployment in large-scale epidemiological and intervention studies.
尽管客观的身体活动监测器(例如,加速度计)具有许多已知的优势,但这些设备的佩戴率很高,这会导致数据缺失。客观的活动监测器也无法获取关于行为的有价值的情境信息。参与身体活动监测和干预研究的青少年将越来越多地使用智能手机,智能手机是一种具有内置运动传感器的微型计算机。
本文描述了一种名为“Mobile Teen”的智能手机应用程序(“app”)的设计和开发,该应用程序通过(1)基于传感器的情境敏感生态瞬时评估(CS-EMA)和(2)传感器辅助的每日回顾,将客观评估和自我报告评估策略相结合。
Mobile Teen 应用程序使用手机内置的运动传感器自动检测手机可能的非佩戴、久坐行为和身体活动的时段。然后,应用程序使用这些推断状态之间的转换来触发 CS-EMA 自我报告调查,实时测量活动的类型、目的和情境。Mobile Teen 应用程序的每日回顾部分允许用户每天晚上使用手机内置运动传感器自动检测到的主要活动过渡的视觉提示,来互动式地回顾和标记自己的身体活动数据。主要活动过渡由应用程序识别,并提示用户使用活动类别标记该“块”或时间段。
基于传感器的 CS-EMA 和每日回顾智能手机应用程序可用于补充客观活动监测器收集的身体活动数据,填补非佩戴时段的数据空白,并提供有关行为的环境、社会和情感相关因素的额外实时数据。像这样的智能手机应用程序具有在大规模流行病学和干预研究中进行经济实惠部署的潜力。