Pietersen Charmaine Y, Mauney Sarah A, Kim Susie S, Passeri Eleonora, Lim Maribel P, Rooney Robert J, Goldstein Jill M, Petreyshen Tracey L, Seidman Larry J, Shenton Martha E, Mccarley Robert W, Sonntag Kai-C, Woo Tsung-Ung W
Laboratory of Cellular Neuropathology, McLean Hospital , Belmont, Massachusetts , USA.
J Neurogenet. 2014 Mar-Jun;28(1-2):70-85. doi: 10.3109/01677063.2013.878339. Epub 2014 Mar 17.
Dysregulation of pyramidal cell network function by the soma- and axon-targeting inhibitory neurons that contain the calcium-binding protein parvalbumin (PV) represents a core pathophysiological feature of schizophrenia. In order to gain insight into the molecular basis of their functional impairment, we used laser capture microdissection (LCM) to isolate PV-immunolabeled neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem schizophrenia and normal control brains. We then extracted ribonucleic acid (RNA) from these neurons and determined their messenger RNA (mRNA) expression profile using the Affymetrix platform of microarray technology. Seven hundred thirty-nine mRNA transcripts were found to be differentially expressed in PV neurons in subjects with schizophrenia, including genes associated with WNT (wingless-type), NOTCH, and PGE2 (prostaglandin E2) signaling, in addition to genes that regulate cell cycle and apoptosis. Of these 739 genes, only 89 (12%) were also differentially expressed in pyramidal neurons, as described in the accompanying paper, suggesting that the molecular pathophysiology of schizophrenia appears to be predominantly neuronal type specific. In addition, we identified 15 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of the predicted targets of these miRNAs included the signaling pathways found by microarray to be dysregulated in schizophrenia. Taken together, findings of this study provide a neurobiological framework within which hypotheses of the molecular mechanisms that underlie the dysfunction of PV neurons in schizophrenia can be generated and experimentally explored and, as such, may ultimately inform the conceptualization of rational targeted molecular intervention for this debilitating disorder.
含有钙结合蛋白小白蛋白(PV)的胞体靶向和轴突靶向抑制性神经元对锥体细胞网络功能的调节异常是精神分裂症的核心病理生理特征。为了深入了解其功能受损的分子基础,我们使用激光捕获显微切割(LCM)技术,从精神分裂症患者和正常对照者死后的大脑颞上回(STG)布罗德曼42区第3层中分离出PV免疫标记的神经元。然后我们从这些神经元中提取核糖核酸(RNA),并使用Affymetrix微阵列技术平台确定其信使核糖核酸(mRNA)表达谱。我们发现,在精神分裂症患者的PV神经元中有739个mRNA转录本差异表达,其中包括与WNT(无翅型)、NOTCH和PGE2(前列腺素E2)信号相关的基因,以及调节细胞周期和细胞凋亡的基因。在这739个基因中,只有89个(12%)在随附论文中描述的锥体细胞中也有差异表达,这表明精神分裂症的分子病理生理学似乎主要是神经元类型特异性的。此外,我们鉴定出15个在精神分裂症中差异表达的微小RNA(miRNA);对这些miRNA预测靶点的富集分析包括微阵列发现的在精神分裂症中失调的信号通路。总之,本研究结果提供了一个神经生物学框架,在此框架内可以产生并通过实验探索精神分裂症中PV神经元功能障碍潜在分子机制的假说,因此,最终可能为这种使人衰弱的疾病的合理靶向分子干预的概念化提供信息。