Suppr超能文献

自然驾驶环境下驾驶员头部方向的自动校准方法

Automatic Calibration Method for Driver's Head Orientation in Natural Driving Environment.

作者信息

Fu Xianping, Guan Xiao, Peli Eli, Liu Hongbo, Luo Gang

机构信息

Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114 USA. He is currently with the Information Science and Technology College, Dalian Maritime University, Dalian 116026, China (

Tulane University, New Orleans, LA 70118 USA.

出版信息

IEEE trans Intell Transp Syst. 2012 Sep 21;14(1):303-310. doi: 10.1109/TITS.2012.2217377.

Abstract

Gaze tracking is crucial for studying driver's attention, detecting fatigue, and improving driver assistance systems, but it is difficult in natural driving environments due to nonuniform and highly variable illumination and large head movements. Traditional calibrations that require subjects to follow calibrators are very cumbersome to be implemented in daily driving situations. A new automatic calibration method, based on a single camera for determining the head orientation and which utilizes the side mirrors, the rear-view mirror, the instrument board, and different zones in the windshield as calibration points, is presented in this paper. Supported by a self-learning algorithm, the system tracks the head and categorizes the head pose in 12 gaze zones based on facial features. The particle filter is used to estimate the head pose to obtain an accurate gaze zone by updating the calibration parameters. Experimental results show that, after several hours of driving, the automatic calibration method without driver's corporation can achieve the same accuracy as a manual calibration method. The mean error of estimated eye gazes was less than 5°in day and night driving.

摘要

注视跟踪对于研究驾驶员注意力、检测疲劳以及改进驾驶员辅助系统至关重要,但在自然驾驶环境中却颇具难度,这是因为光照不均匀且变化极大,同时头部运动幅度也很大。传统的校准方法要求受试者跟随校准器,在日常驾驶场景中实施起来非常麻烦。本文提出了一种新的自动校准方法,该方法基于单个摄像头来确定头部方向,并利用侧视镜、后视镜、仪表盘以及挡风玻璃上的不同区域作为校准点。在自学习算法的支持下,该系统跟踪头部,并根据面部特征将头部姿态分类到12个注视区域中。粒子滤波器用于估计头部姿态,通过更新校准参数来获得准确的注视区域。实验结果表明,经过数小时的驾驶后,无需驾驶员配合的自动校准方法能够达到与手动校准方法相同的精度。在白天和夜间驾驶中,估计眼睛注视的平均误差均小于5°。

相似文献

引用本文的文献

4
Towards Wide Range Tracking of Head Scanning Movement in Driving.面向驾驶中头部扫描运动的大范围跟踪
Intern J Pattern Recognit Artif Intell. 2020 Dec 15;34(13). doi: 10.1142/s0218001420500330. Epub 2020 Apr 20.

本文引用的文献

1
Combining head pose and eye location information for gaze estimation.结合头部姿势和眼睛位置信息进行注视估计。
IEEE Trans Image Process. 2012 Feb;21(2):802-15. doi: 10.1109/TIP.2011.2162740. Epub 2011 Jul 22.
3
The expressive gaze model: using gaze to express emotion.表达性注视模型:利用注视来表达情感。
IEEE Comput Graph Appl. 2010 Jul-Aug;30(4):62-73. doi: 10.1109/MCG.2010.43.
5
In the eye of the beholder: a survey of models for eyes and gaze.在观察者的眼中:眼睛和注视模型的调查。
IEEE Trans Pattern Anal Mach Intell. 2010 Mar;32(3):478-500. doi: 10.1109/TPAMI.2009.30.
6
7
Head pose estimation in computer vision: a survey.计算机视觉中的头部姿态估计:一项综述。
IEEE Trans Pattern Anal Mach Intell. 2009 Apr;31(4):607-26. doi: 10.1109/TPAMI.2008.106.
8
Head yaw estimation from asymmetry of facial appearance.基于面部外观不对称性的头部偏航估计。
IEEE Trans Syst Man Cybern B Cybern. 2008 Dec;38(6):1501-12. doi: 10.1109/TSMCB.2008.928231.
9
A novel gaze estimation system with one calibration point.一种具有一个校准点的新型注视估计系统。
IEEE Trans Syst Man Cybern B Cybern. 2008 Aug;38(4):1123-38. doi: 10.1109/TSMCB.2008.926606.
10
Novel eye gaze tracking techniques under natural head movement.自然头部运动下的新型眼动追踪技术
IEEE Trans Biomed Eng. 2007 Dec;54(12):2246-60. doi: 10.1109/tbme.2007.895750.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验