Holmes Philip, Cohen Jonathan D
Department of Mechanical and Aerospace Engineering, Princeton University; Program in Applied and Computational Mathematics, Princeton University; Princeton Neuroscience Institute, Princeton University.
Top Cogn Sci. 2014 Apr;6(2):258-78. doi: 10.1111/tops.12084. Epub 2014 Mar 20.
We review how leaky competing accumulators (LCAs) can be used to model decision making in two-alternative, forced-choice tasks, and we show how they reduce to drift diffusion (DD) processes in special cases. As continuum limits of the sequential probability ratio test, DD processes are optimal in producing decisions of specified accuracy in the shortest possible time. Furthermore, the DD model can be used to derive a speed-accuracy trade-off that optimizes reward rate for a restricted class of two alternative forced-choice decision tasks. We review findings that compare human performance with this benchmark, and we reveal both approximations to and deviations from optimality. We then discuss three potential sources of deviations from optimality at the psychological level--avoidance of errors, poor time estimation, and minimization of the cost of control--and review recent theoretical and empirical findings that address these possibilities. We also discuss the role of cognitive control in changing environments and in modulating exploitation and exploration. Finally, we consider physiological factors in which nonlinear dynamics may also contribute to deviations from optimality.
我们回顾了泄漏竞争累加器(LCA)如何用于对二选一、强制选择任务中的决策进行建模,并展示了它们在特殊情况下如何简化为漂移扩散(DD)过程。作为序贯概率比检验的连续极限,DD过程在尽可能短的时间内做出具有指定准确性的决策方面是最优的。此外,DD模型可用于推导速度-准确性权衡,以优化一类受限的二选一强制选择决策任务的奖励率。我们回顾了将人类表现与该基准进行比较的研究结果,并揭示了与最优性的近似和偏差。然后,我们讨论了在心理层面上与最优性产生偏差的三个潜在来源——避免错误、时间估计不佳以及控制成本最小化——并回顾了针对这些可能性的近期理论和实证研究结果。我们还讨论了认知控制在变化环境中以及在调节利用和探索方面的作用。最后,我们考虑了生理因素,其中非线性动力学也可能导致与最优性的偏差。