Department of Psychology, Stanford University, Stanford, CA, USA.
Lumos Labs, San Francisco, CA, USA.
Nat Hum Behav. 2023 Jun;7(6):986-1000. doi: 10.1038/s41562-022-01510-8. Epub 2023 Jan 19.
Response time data collected from cognitive tasks are a cornerstone of psychology and neuroscience research, yet existing models of these data either make strong assumptions about the data-generating process or are limited to modelling single trials. We introduce task-DyVA, a deep learning framework in which expressive dynamical systems are trained to reproduce sequences of response times observed in data from individual human subjects. Models fitted to a large task-switching dataset captured subject-specific behavioural differences with high temporal precision, including task-switching costs. Through perturbation experiments and analyses of the models' latent dynamics, we find support for a rational account of switch costs in terms of a stability-flexibility trade-off. Thus, our framework can be used to discover interpretable cognitive theories that explain how the brain dynamically gives rise to behaviour.
从认知任务中收集到的反应时间数据是心理学和神经科学研究的基石,但现有的这些数据模型要么对数据生成过程做出了很强的假设,要么仅限于对单个试验进行建模。我们引入了任务-DyVA,这是一个深度学习框架,其中表达动态系统被训练来复制从单个人类受试者数据中观察到的反应时间序列。拟合到大任务转换数据集的模型以高精度捕捉到特定于主体的行为差异,包括任务转换成本。通过扰动实验和对模型潜在动态的分析,我们发现支持一种基于稳定性-灵活性权衡的理性解释任务转换成本的观点。因此,我们的框架可用于发现可解释的认知理论,解释大脑如何动态地产生行为。