文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用潜在动力系统对认知任务中的人类行为进行建模。

Modelling human behaviour in cognitive tasks with latent dynamical systems.

机构信息

Department of Psychology, Stanford University, Stanford, CA, USA.

Lumos Labs, San Francisco, CA, USA.

出版信息

Nat Hum Behav. 2023 Jun;7(6):986-1000. doi: 10.1038/s41562-022-01510-8. Epub 2023 Jan 19.


DOI:10.1038/s41562-022-01510-8
PMID:36658212
Abstract

Response time data collected from cognitive tasks are a cornerstone of psychology and neuroscience research, yet existing models of these data either make strong assumptions about the data-generating process or are limited to modelling single trials. We introduce task-DyVA, a deep learning framework in which expressive dynamical systems are trained to reproduce sequences of response times observed in data from individual human subjects. Models fitted to a large task-switching dataset captured subject-specific behavioural differences with high temporal precision, including task-switching costs. Through perturbation experiments and analyses of the models' latent dynamics, we find support for a rational account of switch costs in terms of a stability-flexibility trade-off. Thus, our framework can be used to discover interpretable cognitive theories that explain how the brain dynamically gives rise to behaviour.

摘要

从认知任务中收集到的反应时间数据是心理学和神经科学研究的基石,但现有的这些数据模型要么对数据生成过程做出了很强的假设,要么仅限于对单个试验进行建模。我们引入了任务-DyVA,这是一个深度学习框架,其中表达动态系统被训练来复制从单个人类受试者数据中观察到的反应时间序列。拟合到大任务转换数据集的模型以高精度捕捉到特定于主体的行为差异,包括任务转换成本。通过扰动实验和对模型潜在动态的分析,我们发现支持一种基于稳定性-灵活性权衡的理性解释任务转换成本的观点。因此,我们的框架可用于发现可解释的认知理论,解释大脑如何动态地产生行为。

相似文献

[1]
Modelling human behaviour in cognitive tasks with latent dynamical systems.

Nat Hum Behav. 2023-6

[2]
Stochastic Dynamics Underlying Cognitive Stability and Flexibility.

PLoS Comput Biol. 2015-6-12

[3]
Brain Signal Variability Differentially Affects Cognitive Flexibility and Cognitive Stability.

J Neurosci. 2016-4-6

[4]
Age-related differences in BOLD modulation to cognitive control costs in a multitasking paradigm: Global switch, local switch, and compatibility-switch costs.

Neuroimage. 2018-2-3

[5]
Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.

J Neurosci. 2017-11-8

[6]
Rationalizing constraints on the capacity for cognitive control.

Trends Cogn Sci. 2021-9

[7]
Antisaccades and task-switching: interactions in controlled processing.

Exp Brain Res. 2002-6

[8]
Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability.

J Cogn Neurosci. 2012-8-20

[9]
Contextual effects on cognitive control and BOLD activation in single versus mixed saccade tasks.

Brain Cogn. 2017-7

[10]
Gaussian process linking functions for mind, brain, and behavior.

Proc Natl Acad Sci U S A. 2020-11-24

引用本文的文献

[1]
Data-driven equation discovery reveals nonlinear reinforcement learning in humans.

Proc Natl Acad Sci U S A. 2025-8-5

[2]
Discovering cognitive strategies with tiny recurrent neural networks.

Nature. 2025-7-2

[3]
Modeling of control over task switching and cross-task interference supports a two-dimensional model of cognitive stability and flexibility.

Psychon Bull Rev. 2025-6-2

[4]
An image-computable model of speeded decision-making.

Elife. 2025-2-28

[5]
Limitation of switching sensory information flow in flexible perceptual decision making.

Nat Commun. 2025-1-2

[6]
Humans actively reconfigure neural task states.

bioRxiv. 2025-2-28

[7]
Contextual control demands determine whether stability and flexibility trade off against each other.

Atten Percept Psychophys. 2024-10

[8]
Centering cognitive neuroscience on task demands and generalization.

Nat Neurosci. 2024-9

[9]
Harnessing the flexibility of neural networks to predict dynamic theoretical parameters underlying human choice behavior.

PLoS Comput Biol. 2024-1

[10]
Humans reconfigure target and distractor processing to address distinct task demands.

Psychol Rev. 2024-3

本文引用的文献

[1]
Rationalizing constraints on the capacity for cognitive control.

Trends Cogn Sci. 2021-9

[2]
Using large-scale experiments and machine learning to discover theories of human decision-making.

Science. 2021-6-11

[3]
Extracting the dynamics of behavior in sensory decision-making experiments.

Neuron. 2021-2-17

[4]
A deep learning framework for neuroscience.

Nat Neurosci. 2019-10-28

[5]
A large-scale analysis of task switching practice effects across the lifespan.

Proc Natl Acad Sci U S A. 2019-8-19

[6]
Models that learn how humans learn: The case of decision-making and its disorders.

PLoS Comput Biol. 2019-6-11

[7]
Task representations in neural networks trained to perform many cognitive tasks.

Nat Neurosci. 2019-1-14

[8]
Inferring single-trial neural population dynamics using sequential auto-encoders.

Nat Methods. 2018-9-17

[9]
Flexible timing by temporal scaling of cortical responses.

Nat Neurosci. 2017-12-4

[10]
Age-differences in cognitive flexibility when overcoming a preexisting bias through feedback.

J Clin Exp Neuropsychol. 2018-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索