Minissale M, Fedoseev G, Congiu E, Ioppolo S, Dulieu F, Linnartz H
LERMA-LAMAp, Université de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 Mail Gay Lussac, 95000 Cergy Pontoise Cedex, France.
Phys Chem Chem Phys. 2014 May 14;16(18):8257-69. doi: 10.1039/c3cp54917h.
The role of nitrogen and oxygen chemistry in the interstellar medium is still rather poorly understood. Nitric oxide, NO, has been proposed as an important precursor in the formation of larger N- and O-bearing species, such as hydroxylamine, NH2OH, and nitrogen oxides, NO2 and N2O. The topic of this study is the solid state consumption of NO via oxygenation and the formation of NO2 and other nitrogen oxides (ONNO2 and N2O4) under conditions close to those encountered on icy grains in quiescent interstellar clouds. In our experiments nitric oxide and oxygen allotropes (O, O2, and O3) or N atoms are co-deposited under ultra-high vacuum conditions on different substrates (silicate, graphite, compact ASW ice, and gold) at temperatures ranging between 10 and 35 K. Reaction products are monitored via Fourier Transform Reflection Absorption Infrared Spectroscopy (FT-RAIRS) and Temperature Programmed Desorption (TPD) using mass spectrometry. We find that NO2 is efficiently formed in NO + O/O2/O3/N solid surface reactions. These are essentially barrier free and offer a pathway for the formation of NO2 in space. Nitrogen dioxide, however, has not been astronomically detected, contradicting the efficient reaction channel found here. This is likely due to other pathways, including regular hydrogenation reactions, as discussed separately in part II of this study.
氮和氧化学在星际介质中的作用仍未得到很好的理解。一氧化氮(NO)被认为是形成更大的含氮和含氧物种(如羟胺(NH2OH)、氮氧化物(NO2和N2O))的重要前体。本研究的主题是在接近星际静止云冰粒所遇到的条件下,通过氧化作用固态消耗NO以及形成NO2和其他氮氧化物(ONNO2和N2O4)。在我们的实验中,一氧化氮和氧的同素异形体(O、O2和O3)或N原子在超高真空条件下,于10至35K的温度范围内共沉积在不同的基底(硅酸盐、石墨、致密无定形水冰和金)上。通过傅里叶变换反射吸收红外光谱(FT - RAIRS)和使用质谱的程序升温脱附(TPD)来监测反应产物。我们发现在NO + O/O2/O3/N的固体表面反应中能高效形成NO2。这些反应基本上没有势垒,为太空中NO2的形成提供了一条途径。然而,二氧化氮尚未在天文学上被检测到,这与在此发现的高效反应通道相矛盾。这可能是由于其他途径,包括常规的氢化反应,本研究的第二部分将单独讨论。