Department of Bioengineering, California NanoSystems Institute, Jonsson Comprehensive Cancer Center, University of California Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Box 951600, Los Angeles, California 90095, USA.
Lab Chip. 2014 May 7;14(9):1491-5. doi: 10.1039/c4lc90023e. Epub 2014 Mar 27.
In this issue we highlight emerging microfabrication approaches suitable for microfluidic systems with a focus on "additive manufacturing" processes (i.e. printing). In parallel with the now-wider availability of low cost consumer-grade 3D printers (as evidenced by at least three brands of 3D printers for sale in a recent visit to an electronics store in Akihabara, Tokyo), commercial-grade 3D printers are ramping to higher and higher resolution with new capabilities, such as printing of multiple materials of different transparency, and with different mechanical and electrical properties. We highlight new work showing that 3D printing (stereolithography approaches in particular) has now risen as a viable technology to print whole microfluidic devices. Printing on 2D surfaces such as paper is an everyday experience, and has been used widely in analytical chemistry for printing conductive materials on paper strips for glucose and other electrochemical sensors. We highlight recent work using electrodes printed on paper for digital microfluidic droplet actuation. Finally, we highlight recent work in which printing of membrane-bound droplets that interconnect through bilayer membranes may open up an entirely new approach to microfluidic manufacturing of soft devices that mimic physiological systems.
在本期中,我们重点介绍了适合微流控系统的新兴微制造方法,主要关注“增材制造”工艺(即打印)。随着成本更低的消费级 3D 打印机的广泛应用(最近在东京秋叶原的一家电子产品商店至少看到了三个品牌的 3D 打印机在销售),商业级 3D 打印机的分辨率也在不断提高,具有新的功能,如打印多种不同透明度的材料,以及具有不同机械和电气性能的材料。我们重点介绍了新的工作,表明 3D 打印(特别是立体光刻方法)现已成为打印整体微流控设备的可行技术。在 2D 表面(如纸张)上打印是一种日常体验,并且已经在分析化学中广泛用于在纸条上打印导电材料,用于葡萄糖和其他电化学生物传感器。我们重点介绍了最近使用打印在纸张上的电极进行数字微流控液滴驱动的工作。最后,我们重点介绍了最近的工作,其中通过双层膜连接的膜结合液滴的打印可能为模仿生理系统的软设备的微流控制造开辟全新的途径。