BioCircuits Institute, University of California San Diego, La Jolla, CA, USA.
Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid Madrid, Spain.
Front Comput Neurosci. 2014 Mar 14;8:22. doi: 10.3389/fncom.2014.00022. eCollection 2014.
Recent results of imaging technologies and non-linear dynamics make possible to relate the structure and dynamics of functional brain networks to different mental tasks and to build theoretical models for the description and prediction of cognitive activity. Such models are non-linear dynamical descriptions of the interaction of the core components-brain modes-participating in a specific mental function. The dynamical images of different mental processes depend on their temporal features. The dynamics of many cognitive functions are transient. They are often observed as a chain of sequentially changing metastable states. A stable heteroclinic channel (SHC) consisting of a chain of saddles-metastable states-connected by unstable separatrices is a mathematical image for robust transients. In this paper we focus on hierarchical chunking dynamics that can represent several forms of transient cognitive activity. Chunking is a dynamical phenomenon that nature uses to perform information processing of long sequences by dividing them in shorter information items. Chunking, for example, makes more efficient the use of short-term memory by breaking up long strings of information (like in language where one can see the separation of a novel on chapters, paragraphs, sentences, and finally words). Chunking is important in many processes of perception, learning, and cognition in humans and animals. Based on anatomical information about the hierarchical organization of functional brain networks, we propose a cognitive network architecture that hierarchically chunks and super-chunks switching sequences of metastable states produced by winnerless competitive heteroclinic dynamics.
最近的成像技术和非线性动力学的研究成果使得将功能性大脑网络的结构和动力学与不同的心理任务联系起来,并构建用于描述和预测认知活动的理论模型成为可能。这些模型是非线性动力学对参与特定心理功能的核心组件-大脑模式-相互作用的描述。不同心理过程的动态图像取决于它们的时间特征。许多认知功能的动态都是瞬态的。它们通常表现为一系列顺序变化的亚稳状态。由一系列鞍点-亚稳状态通过不稳定的分界面连接而成的稳定异宿通道(SHC)是稳健瞬态的数学图像。在本文中,我们专注于层次分块动力学,它可以表示几种形式的瞬态认知活动。分块是一种自然现象,通过将长序列划分为较短的信息项,来实现对长序列信息的处理。例如,分块通过打破长串信息(如在语言中,人们可以看到一章、一段、一句话,最后是一个单词的分离),可以更有效地利用短期记忆。分块在人类和动物的许多感知、学习和认知过程中都很重要。基于关于功能性大脑网络的层次组织的解剖学信息,我们提出了一种认知网络架构,该架构通过无胜者竞争异宿动力学产生的亚稳状态切换序列来进行层次分块和超块。