Suppr超能文献

冥想研究:过去、现在和未来——那烂陀沉思科学传统的观点。

Meditation research, past, present, and future: perspectives from the Nalanda contemplative science tradition.

机构信息

Center for Integrative Medicine, Weill Cornell Medical College, New York.

出版信息

Ann N Y Acad Sci. 2014 Jan;1307(1):43-54. doi: 10.1111/nyas.12273. Epub 2013 Nov 8.

Abstract

This article offers an overview of meditation research: its history, recent developments, and future directions. As the number and scope of studies grow, the field has converged with cognitive and affective neuroscience, and spawned many clinical applications. Recent work has shed light on the mechanisms and effects of diverse practices, and is entering a new phase where consensus and coherent paradigms are within reach. This article suggests an unusual path for future advancement: complementing conventional research with rigorous dialogue with the contemplative traditions that train expert meditators and best know the techniques. It explores the Nalanda tradition developed in India and preserved in Tibet, because its cumulative approach to contemplative methods produced a comprehensive framework that may help interpret data and guide research, and because its naturalistic theories and empirical methods may help bridge the gulf between science and other contemplative traditions. Examining recent findings and models in light of this framework, the article introduces the Indic map of the central nervous system and presents three testable predictions based on it. Finally, it reviews two studies that suggest that the multimodal Nalanda approach to contemplative learning is as well received as more familiar approaches, while showing promise of being more effective.

摘要

本文概述了冥想研究的历史、最新进展和未来方向。随着研究数量和范围的扩大,该领域已经与认知和情感神经科学融合,并产生了许多临床应用。最近的工作揭示了各种实践的机制和效果,并进入了一个可以达成共识和连贯范式的新阶段。本文提出了一个不同寻常的未来发展方向:通过与培养专家冥想者和最了解技术的冥想传统进行严格对话,补充传统研究。它探讨了印度发展并保留在西藏的那烂陀传统,因为它对冥想方法的累积方法产生了一个全面的框架,这可能有助于解释数据和指导研究,并且因为它的自然主义理论和经验方法可能有助于弥合科学与其他冥想传统之间的差距。本文根据这一框架,考察了最近的研究结果和模型,并提出了三个基于该框架的可检验预测。最后,它回顾了两项研究,表明那烂陀多模态的冥想学习方法与更熟悉的方法一样受欢迎,同时显示出更有效的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b6/4253124/3e759260a4ac/nyas1307-0043-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验