Suppr超能文献

利用基于图拉普拉斯学习的傅里叶变换研究青少年大脑成熟度。

Examining brain maturation during adolescence using graph Laplacian learning based Fourier transform.

机构信息

Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.

Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.

出版信息

J Neurosci Methods. 2020 May 15;338:108649. doi: 10.1016/j.jneumeth.2020.108649. Epub 2020 Mar 10.

Abstract

BACKGROUND

Longitudinal neuroimaging studies have demonstrated that adolescence is a crucial developmental period of continued brain growth and change. Motivated by both achievements in graph signal processing and recent evidence that some brain areas act as hubs connecting functionally specialized systems, we propose an approach to detect these regions from a spectral analysis perspective. In particular, as the human brain undergoes substantial development throughout adolescence, we evaluate functional network difference among age groups from functional magnetic resonance imaging (fMRI) measurements.

NEW METHODS

We treated these measurements as graph signals defined on the parcellated functional brain regions and proposed a graph Laplacian learning based Fourier transform (GLFT) to transform the original graph signals into the frequency domain. Eigen-analysis was conducted afterwards to study the behaviors of the corresponding brain regions, which enabled the characterization of brain maturation.

RESULT

We first evaluated our method on the synthetic data and then applied it to resting state and task fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) dataset, comprised of normally developing adolescents from 8 to 22 years of age. The method provided an accuracy of 94.9% in distinguishing different adolescent stages and we detected 13 hubs from resting state fMRI and 16 hubs from task fMRI related to brain maturation.

COMPARISON WITH EXISTING METHODS

The proposed GLFT demonstrated its superiority over conventional graph Fourier transform and alternative graph Fourier transform with high predictive power.

CONCLUSION

The method provides a powerful approach for extracting brain connectivity patterns and identifying hub regions.

摘要

背景

纵向神经影像学研究表明,青春期是大脑持续生长和变化的关键发育阶段。受到图信号处理方面的成就以及一些大脑区域充当连接功能专业化系统的枢纽的最新证据的启发,我们提出了一种从谱分析角度来检测这些区域的方法。特别是,由于人类大脑在青春期经历了大量的发育,我们从功能磁共振成像(fMRI)测量中评估了不同年龄组之间的功能网络差异。

新方法

我们将这些测量值视为在分割的功能脑区上定义的图信号,并提出了一种基于图拉普拉斯学习的傅里叶变换(GLFT),将原始图信号转换到频域。随后进行特征分析,以研究相应脑区的行为,从而实现大脑成熟的特征描述。

结果

我们首先在合成数据上评估了我们的方法,然后将其应用于来自费城神经发育队列(PNC)数据集的静息态和任务 fMRI 数据,该数据集由 8 至 22 岁的正常发育青少年组成。该方法在区分不同青少年阶段的准确率达到 94.9%,并从静息态 fMRI 中检测到 13 个与大脑成熟相关的枢纽,从任务 fMRI 中检测到 16 个枢纽。

与现有方法的比较

所提出的 GLFT 证明了其优于传统图傅里叶变换和替代图傅里叶变换的优越性,具有很高的预测能力。

结论

该方法为提取大脑连接模式和识别枢纽区域提供了一种强大的方法。

相似文献

1
Examining brain maturation during adolescence using graph Laplacian learning based Fourier transform.
J Neurosci Methods. 2020 May 15;338:108649. doi: 10.1016/j.jneumeth.2020.108649. Epub 2020 Mar 10.
2
Functional network estimation using multigraph learning with application to brain maturation study.
Hum Brain Mapp. 2021 Jun 15;42(9):2880-2892. doi: 10.1002/hbm.25410. Epub 2021 Mar 31.
3
Graph Fourier transform of fMRI temporal signals based on an averaged structural connectome for the classification of neuroimaging.
Artif Intell Med. 2020 Jun;106:101870. doi: 10.1016/j.artmed.2020.101870. Epub 2020 May 21.
4
Correlation Guided Graph Learning to Estimate Functional Connectivity Patterns From fMRI Data.
IEEE Trans Biomed Eng. 2021 Apr;68(4):1154-1165. doi: 10.1109/TBME.2020.3022335. Epub 2021 Mar 18.
5
Rest-fMRI based comparison study between autism spectrum disorder and typically control using graph frequency bands.
Comput Biol Med. 2022 Jul;146:105643. doi: 10.1016/j.compbiomed.2022.105643. Epub 2022 May 17.
6
Functional brain hubs and their test-retest reliability: a multiband resting-state functional MRI study.
Neuroimage. 2013 Dec;83:969-82. doi: 10.1016/j.neuroimage.2013.07.058. Epub 2013 Jul 27.
7
Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.
Clin Neurophysiol. 2015 Nov;126(11):2132-41. doi: 10.1016/j.clinph.2015.02.060. Epub 2015 Apr 1.
8
Gradients of connectivity as graph Fourier bases of brain activity.
Netw Neurosci. 2021 Apr 27;5(2):322-336. doi: 10.1162/netn_a_00183. eCollection 2021.
9
Phase fMRI defines brain resting-state functional hubs within central and posterior regions.
Brain Struct Funct. 2021 Jul;226(6):1925-1941. doi: 10.1007/s00429-021-02301-z. Epub 2021 May 29.
10
Developmental Changes in Brain Network Hub Connectivity in Late Adolescence.
J Neurosci. 2015 Jun 17;35(24):9078-87. doi: 10.1523/JNEUROSCI.5043-14.2015.

引用本文的文献

1
Graph Laplacian Learning with Exponential Family Noise.
IEEE Trans Signal Inf Process Netw. 2025;11:641-654. doi: 10.1109/tsipn.2025.3572698. Epub 2025 May 26.
2
DFC-Igloo: A dynamic functional connectome learning framework for identifying neurodevelopmental biomarkers in very preterm infants.
Comput Methods Programs Biomed. 2024 Dec;257:108479. doi: 10.1016/j.cmpb.2024.108479. Epub 2024 Oct 26.
3
Machine Learning and Graph Signal Processing Applied to Healthcare: A Review.
Bioengineering (Basel). 2024 Jul 2;11(7):671. doi: 10.3390/bioengineering11070671.
4
Dynamic weighted hypergraph convolutional network for brain functional connectome analysis.
Med Image Anal. 2023 Jul;87:102828. doi: 10.1016/j.media.2023.102828. Epub 2023 Apr 25.
6
Functional network estimation using multigraph learning with application to brain maturation study.
Hum Brain Mapp. 2021 Jun 15;42(9):2880-2892. doi: 10.1002/hbm.25410. Epub 2021 Mar 31.
7
Correlation Guided Graph Learning to Estimate Functional Connectivity Patterns From fMRI Data.
IEEE Trans Biomed Eng. 2021 Apr;68(4):1154-1165. doi: 10.1109/TBME.2020.3022335. Epub 2021 Mar 18.

本文引用的文献

1
Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification.
Med Image Anal. 2019 Feb;52:80-96. doi: 10.1016/j.media.2018.11.006. Epub 2018 Nov 13.
2
Fused Estimation of Sparse Connectivity Patterns From Rest fMRI-Application to Comparison of Children and Adult Brains.
IEEE Trans Med Imaging. 2018 Oct;37(10):2165-2175. doi: 10.1109/TMI.2017.2721640. Epub 2017 Jun 29.
3
Graph Frequency Analysis of Brain Signals.
IEEE J Sel Top Signal Process. 2016 Oct;10(7):1189-1203. doi: 10.1109/JSTSP.2016.2600859. Epub 2016 Aug 16.
4
The brain's default mode network.
Annu Rev Neurosci. 2015 Jul 8;38:433-47. doi: 10.1146/annurev-neuro-071013-014030. Epub 2015 May 4.
5
The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth.
Neuroimage. 2016 Jan 1;124(Pt B):1115-1119. doi: 10.1016/j.neuroimage.2015.03.056. Epub 2015 Mar 31.
6
Identifying Sparse Connectivity Patterns in the brain using resting-state fMRI.
Neuroimage. 2015 Jan 15;105:286-99. doi: 10.1016/j.neuroimage.2014.09.058. Epub 2014 Oct 2.
7
Matched signal detection on graphs: theory and application to brain network classification.
Inf Process Med Imaging. 2013;23:1-12. doi: 10.1007/978-3-642-38868-2_1.
8
Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD.
Neuroimage. 2014 Nov 15;102 Pt 1:207-19. doi: 10.1016/j.neuroimage.2013.12.015. Epub 2013 Dec 19.
9
Neuroimaging of the Philadelphia neurodevelopmental cohort.
Neuroimage. 2014 Feb 1;86:544-53. doi: 10.1016/j.neuroimage.2013.07.064. Epub 2013 Aug 3.
10
BrainNet Viewer: a network visualization tool for human brain connectomics.
PLoS One. 2013 Jul 4;8(7):e68910. doi: 10.1371/journal.pone.0068910. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验