Suppr超能文献

从代谢组学协方差数据中求解微分生化雅可比矩阵。

Solving the differential biochemical Jacobian from metabolomics covariance data.

机构信息

Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.

出版信息

PLoS One. 2014 Apr 2;9(4):e92299. doi: 10.1371/journal.pone.0092299. eCollection 2014.

Abstract

High-throughput molecular analysis has become an integral part in organismal systems biology. In contrast, due to a missing systematic linkage of the data with functional and predictive theoretical models of the underlying metabolic network the understanding of the resulting complex data sets is lacking far behind. Here, we present a biomathematical method addressing this problem by using metabolomics data for the inverse calculation of a biochemical Jacobian matrix, thereby linking computer-based genome-scale metabolic reconstruction and in vivo metabolic dynamics. The incongruity of metabolome coverage by typical metabolite profiling approaches and genome-scale metabolic reconstruction was solved by the design of superpathways to define a metabolic interaction matrix. A differential biochemical Jacobian was calculated using an approach which links this metabolic interaction matrix and the covariance of metabolomics data satisfying a Lyapunov equation. The predictions of the differential Jacobian from real metabolomic data were found to be correct by testing the corresponding enzymatic activities. Moreover it is demonstrated that the predictions of the biochemical Jacobian matrix allow for the design of parameter optimization strategies for ODE-based kinetic models of the system. The presented concept combines dynamic modelling strategies with large-scale steady state profiling approaches without the explicit knowledge of individual kinetic parameters. In summary, the presented strategy allows for the identification of regulatory key processes in the biochemical network directly from metabolomics data and is a fundamental achievement for the functional interpretation of metabolomics data.

摘要

高通量分子分析已成为生物体系统生物学的一个组成部分。相比之下,由于缺乏数据与潜在代谢网络的功能和预测性理论模型的系统联系,对由此产生的复杂数据集的理解远远落后。在这里,我们提出了一种生物数学方法,通过使用代谢组学数据来反算生化雅可比矩阵,从而将基于计算机的基因组尺度代谢重建和体内代谢动力学联系起来,解决了这个问题。通过设计超路径来定义代谢相互作用矩阵,解决了典型代谢物分析方法和基因组尺度代谢重建对代谢组覆盖的不匹配问题。通过链接代谢相互作用矩阵和满足李雅普诺夫方程的代谢组学数据协方差的方法计算了微分生化雅可比矩阵。通过测试相应的酶活性,发现从真实代谢组学数据计算得到的微分雅可比矩阵的预测是正确的。此外,还证明了生化雅可比矩阵的预测可以为基于 ODE 的系统动力学模型的参数优化策略设计提供依据。所提出的概念结合了动态建模策略和大规模稳态分析方法,而无需明确了解单个动力学参数。总之,该策略允许直接从代谢组学数据中鉴定生化网络中的调节关键过程,是对代谢组学数据进行功能解释的一项基本成就。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a13/3977476/9ac85d401cee/pone.0092299.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验