Chang Mengqi, Huang Hui, Yue Mingxi, Jiang Yuetong, Yan Siping, Chen Yiyi, Wu Wenrong, Gao Yibing, Fang Mujin, Yuan Quan, Xiong Hualong, Zhang Tianying
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China.
National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
Viruses. 2025 Jul 30;17(8):1062. doi: 10.3390/v17081062.
Recombinant vesicular stomatitis virus (rVSV) is a promising viral vaccine vector for addressing the COVID-19 pandemic. Inducing mucosal immunity via the intranasal route is an ideal strategy for rVSV-based vaccines, but it requires extremely stringent safety standards. In this study, we constructed two rVSV variants with amino acid mutations in their M protein: rVSV-M2 with M33A/M51R mutations and rVSV-M4 with M33A/M51R/V221F/S226R mutations, and developed COVID-19 vaccines based on these attenuated vectors. By comparing viral replication capacity, intranasal immunization, intracranial injection, and blood cell counts, we demonstrated that the M protein mutation variants exhibit significant attenuation effects both in vitro and in vivo. Moreover, preliminary investigations into the mechanisms of virus attenuation revealed that these attenuated viruses can induce a stronger type I interferon response while reducing inflammation compared to the wild-type rVSV. We developed three candidate vaccines against SARS-CoV-2 using the wildtype VSV backbone with either wild-type M (rVSV-JN.1) and two M mutant variants (rVSV-M2-JN.1 and rVSV-M4-JN.1). Our results confirmed that rVSV-M2-JN.1 and rVSV-M4-JN.1 retain strong immunogenicity while enhancing safety in hamsters. In summary, the rVSV variants with M protein mutations represent promising candidate vectors for mucosal vaccines and warrant further investigation.
重组水疱性口炎病毒(rVSV)是应对新冠疫情的一种有前景的病毒疫苗载体。通过鼻内途径诱导黏膜免疫是基于rVSV的疫苗的理想策略,但这需要极其严格的安全标准。在本研究中,我们构建了两种在其M蛋白中具有氨基酸突变的rVSV变体:具有M33A/M51R突变的rVSV-M2和具有M33A/M51R/V221F/S226R突变的rVSV-M4,并基于这些减毒载体开发了新冠疫苗。通过比较病毒复制能力、鼻内免疫、颅内注射和血细胞计数,我们证明M蛋白突变变体在体外和体内均表现出显著的减毒效果。此外,对病毒减毒机制的初步研究表明,与野生型rVSV相比,这些减毒病毒可诱导更强的I型干扰素反应,同时减少炎症。我们使用野生型VSV主干以及野生型M(rVSV-JN.1)和两种M突变变体(rVSV-M2-JN.1和rVSV-M4-JN.1)开发了三种针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的候选疫苗。我们的结果证实,rVSV-M2-JN.1和rVSV-M4-JN.1在增强仓鼠安全性的同时保留了强大的免疫原性。总之,具有M蛋白突变的rVSV变体是黏膜疫苗的有前景的候选载体,值得进一步研究。