School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom.
School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom.
Curr Opin Neurobiol. 2014 Apr;25:99-106. doi: 10.1016/j.conb.2013.12.003. Epub 2014 Jan 15.
With a fully reconstructed and extensively characterized neural circuit, the nematode Caenorhabditis elegans is a promising model system for integrating our understanding of neuronal, circuit and whole-animal dynamics. Fundamental to addressing this challenge is the need to consider the tight neuronal-environmental coupling that allows the animal to survive and adapt to changing conditions. Locomotion behaviors are affected by environmental variables both at the biomechanical level and via adaptive sensory responses that drive and modulate premotor and motor circuits. Here we review significant advances in our understanding of proprioceptive control of locomotion, and more abstract models of spatial orientation and navigation. The growing evidence of the complexity of the underlying circuits suggests that the intuition gained is but the first step in elucidating the secrets of neural computation in this relatively simple system.
利用一个完全重建和广泛特征化的神经网络,秀丽隐杆线虫是一个很有前途的模型系统,可以将我们对神经元、电路和整个动物动态的理解整合在一起。解决这一挑战的基础是需要考虑到允许动物生存和适应变化条件的紧密的神经元-环境耦合。运动行为受到生物力学水平的环境变量以及通过适应性感觉反应的影响,这些反应驱动和调节前运动和运动电路。在这里,我们回顾了对运动本体感觉控制以及更抽象的空间定向和导航模型的理解方面的重要进展。越来越多的证据表明,潜在电路的复杂性表明,在这个相对简单的系统中,获得的直觉只是阐明神经计算秘密的第一步。