Suppr超能文献

基于全基因组序列数据的传染病传播贝叶斯推断。

Bayesian inference of infectious disease transmission from whole-genome sequence data.

作者信息

Didelot Xavier, Gardy Jennifer, Colijn Caroline

机构信息

Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom

Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver, BC, CanadaSchool of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.

出版信息

Mol Biol Evol. 2014 Jul;31(7):1869-79. doi: 10.1093/molbev/msu121. Epub 2014 Apr 8.

Abstract

Genomics is increasingly being used to investigate disease outbreaks, but an important question remains unanswered--how well do genomic data capture known transmission events, particularly for pathogens with long carriage periods or large within-host population sizes? Here we present a novel Bayesian approach to reconstruct densely sampled outbreaks from genomic data while considering within-host diversity. We infer a time-labeled phylogeny using Bayesian evolutionary analysis by sampling trees (BEAST), and then infer a transmission network via a Monte Carlo Markov chain. We find that under a realistic model of within-host evolution, reconstructions of simulated outbreaks contain substantial uncertainty even when genomic data reflect a high substitution rate. Reconstruction of a real-world tuberculosis outbreak displayed similar uncertainty, although the correct source case and several clusters of epidemiologically linked cases were identified. We conclude that genomics cannot wholly replace traditional epidemiology but that Bayesian reconstructions derived from sequence data may form a useful starting point for a genomic epidemiology investigation.

摘要

基因组学越来越多地被用于调查疾病爆发,但一个重要问题仍未得到解答,即基因组数据对已知传播事件的捕捉效果如何,尤其是对于携带期长或宿主体内种群规模大的病原体?在此,我们提出一种新颖的贝叶斯方法,在考虑宿主体内多样性的同时,从基因组数据重建密集采样的疫情爆发情况。我们通过采样树的贝叶斯进化分析(BEAST)推断带时间标签的系统发育树,然后通过蒙特卡罗马尔可夫链推断传播网络。我们发现,在现实的宿主体内进化模型下,即使基因组数据反映出高替换率,模拟疫情爆发的重建仍存在很大不确定性。对一次真实世界结核病爆发的重建也显示出类似的不确定性,尽管确定了正确的源头病例和几个有流行病学关联的病例集群。我们得出结论,基因组学不能完全取代传统流行病学,但从序列数据得出的贝叶斯重建可能构成基因组流行病学调查的有用起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a2d/4069612/e54c6c7563ca/msu121f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验