Wenning Angela, Norris Brian J, Doloc-Mihu Anca, Calabrese Ronald L
Department of Biology, Emory University, Atlanta, Georgia; and
Department of Biology, Emory University, Atlanta, Georgia; and Department of Biological Sciences, California State University, San Marcos, California.
J Neurophysiol. 2014 Jul 1;112(1):95-109. doi: 10.1152/jn.00856.2013. Epub 2014 Apr 9.
Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved.
中枢模式发生器(CPGs)产生最终驱动运动输出的运动模式。我们研究了功能性运动表现是如何实现的,具体而言,运动模式中观察到的变化是否反映在运动表现中,以及虚拟运动模式是否与体内的运动模式不同。我们使用水蛭心跳系统,其中双侧对称的CPG将节段性心脏运动神经元和两根节段性心脏管协调成两种相互排斥的协调模式:一侧为从后向前的蠕动,另一侧为几乎同步,且有规律的左右切换。我们评估了体内运动模式和搏动模式的个体变异性。为了量化搏动模式,我们对完整的成年水蛭进行成像。为了量化运动神经元与心脏收缩之间的相位关系,我们在最少解剖的水蛭中从两个心脏运动神经元进行细胞外记录,并记录相应心脏节段的运动。运动模式的变化仅在蠕动模式下反映在运动表现中,在该模式下,运动神经元中较大的节段间相位差异导致心脏收缩之间较大的相位差异。虚拟运动模式仅在同步模式下与体内的不同,在同步模式下,体内节段间相位差异具有更大的前后偏向且受到更多限制。此外,负载影响的收缩时间可能解释了蠕动模式下心脏节段之间相位差异的放大以及由于这种软体动物所假设的身体形状导致的运动输出更高变异性。运动模式决定了搏动模式是蠕动还是同步,但心脏力学影响所实现的相位关系。