Suppr超能文献

三维打印手术器械:我们做到了吗?

Three-dimensional printing surgical instruments: are we there yet?

机构信息

Department of Surgery, University of Arizona, Tucson, Arizona.

Department of Surgery, Southern Arizona Limb Salvage Alliance, Tucson, Arizona.

出版信息

J Surg Res. 2014 Jun 15;189(2):193-7. doi: 10.1016/j.jss.2014.02.020. Epub 2014 Feb 19.

Abstract

BACKGROUND

The applications for rapid prototyping have expanded dramatically over the last 20 y. In recent years, additive manufacturing has been intensely investigated for surgical implants, tissue scaffolds, and organs. There is, however, scant literature to date that has investigated the viability of three-dimensional (3D) printing of surgical instruments.

MATERIALS AND METHODS

Using a fused deposition modeling printer, an Army/Navy surgical retractor was replicated from polylactic acid (PLA) filament. The retractor was sterilized using standard Food and Drug Administration approved glutaraldehyde protocols, tested for bacteria by polymerase chain reaction, and stressed until fracture to determine if the printed instrument could tolerate force beyond the demands of an operating room (OR).

RESULTS

Printing required roughly 90 min. The instrument tolerated 13.6 kg of tangential force before failure, both before and after exposure to the sterilant. Freshly extruded PLA from the printer was sterile and produced no polymerase chain reaction product. Each instrument weighed 16 g and required only $0.46 of PLA.

CONCLUSIONS

Our estimates place the cost per unit of a 3D-printed retractor to be roughly 1/10th the cost of a stainless steel instrument. The PLA Army/Navy retractor is strong enough for the demands of the OR. Freshly extruded PLA in a clean environment, such as an OR, would produce a sterile ready-to-use instrument. Because of the unprecedented accessibility of 3D printing technology world wide and the cost efficiency of these instruments, there are far reaching implications for surgery in some underserved and less developed parts of the world.

摘要

背景

在过去的 20 年中,快速原型制作的应用已经大大扩展。近年来,添加剂制造已被强烈用于外科植入物、组织支架和器官。然而,迄今为止,几乎没有文献研究过外科器械的三维(3D)打印的可行性。

材料和方法

使用熔丝制造(Fused Deposition Modeling,FDM)打印机,从聚乳酸(PLA)长丝复制了陆军/海军外科牵开器。使用标准的美国食品和药物管理局(FDA)批准的戊二醛方案对牵开器进行了灭菌,通过聚合酶链反应(Polymerase Chain Reaction,PCR)测试了细菌,并进行了直至断裂的应力测试,以确定打印的器械是否能够承受超出手术室(OR)要求的力。

结果

打印大约需要 90 分钟。该器械在未暴露于灭菌剂和暴露于灭菌剂后,在失效前可承受 13.6 千克的切向力。从打印机中挤出的新鲜 PLA 是无菌的,不会产生聚合酶链反应产物。每个器械重 16 克,仅需 PLA 0.46 美元。

结论

我们的估计表明,3D 打印牵开器的单位成本大约是不锈钢器械的 1/10。PLA 陆军/海军牵开器足以满足 OR 的要求。在清洁的环境(如 OR)中,挤出的新鲜 PLA 将产生无菌的即用型器械。由于 3D 打印技术在全球范围内前所未有的可及性和这些器械的成本效益,对于世界上一些服务不足和欠发达地区的手术具有深远的影响。

相似文献

1
Three-dimensional printing surgical instruments: are we there yet?三维打印手术器械:我们做到了吗?
J Surg Res. 2014 Jun 15;189(2):193-7. doi: 10.1016/j.jss.2014.02.020. Epub 2014 Feb 19.

引用本文的文献

3
Development and mechanical-functional validation of 3D-printed laparoscopic forceps.3D 打印腹腔镜器械的研制与力学功能验证。
Rev Col Bras Cir. 2024 Jun 14;51:e20243619. doi: 10.1590/0100-6991e-20243619-en. eCollection 2024.
5
Applications of PLA in modern medicine.聚乳酸在现代医学中的应用。
Eng Regen. 2020;1:76-87. doi: 10.1016/j.engreg.2020.08.002. Epub 2020 Sep 6.

本文引用的文献

2
3D printing and neurosurgery--ready for prime time?3D打印与神经外科——准备好迎接黄金时代了吗?
World Neurosurg. 2013 Sep-Oct;80(3-4):233-5. doi: 10.1016/j.wneu.2013.07.009. Epub 2013 Jul 16.
6
Organ printing: the future of bone regeneration?器官打印:骨再生的未来?
Trends Biotechnol. 2011 Dec;29(12):601-6. doi: 10.1016/j.tibtech.2011.07.001. Epub 2011 Aug 9.
7
Understanding, avoiding, and managing dermal filler complications.了解、避免和处理真皮填充剂并发症。
Dermatol Surg. 2008 Jun;34 Suppl 1:S92-9. doi: 10.1111/j.1524-4725.2008.34249.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验